To ensure optimal feed intake, growth, and general fish health in aquaculture sea cages, interactions between drivers that affect oxygen conditions need to be understood. The main drivers are oxygen consumption and water exchange, caused by flow through the cage. Swimming energetics in rainbow trout () in normoxia and hypoxia at 10, 15, and 20 °C were determined. Using the determinations, a conceptual model of oxygen conditions within sea cages was created. By applying the model to a case study, results show that with a temperature increase of 10 °C, oxygen concentration will decrease three times faster. To maintain optimal oxygen concentration within the cage, the flow velocity must be increased by a factor of 3.7. The model is highly relevant for current farms since the model predictions can explain why and when suboptimal conditions occur within the cages. Using the same method, the model can be used to estimate the suitability of potential new aquaculture sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669768 | PMC |
http://dx.doi.org/10.3390/biology12111408 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!