A NiCoO/NiCoO/Ni foam (NCO/NCO/NF) hybrid composite with a wire-penetrated-cage hierarchical structure was synthesized by growth of bimetallic NiCo metal-organic frameworks (NiCo-MOF) on a NiCo layered double hydroxide (NiCo-LDH) nanowire-modified Ni foam (NF) surface and subsequent heat treatment in air. The NCO/NCO/NF hybrid composite shows higher specific surface area and more active sites than its individual components. The wire-penetrated-cage hierarchical structure of NCO/NCO/NF and the synergistic coupling of NCO hollow nanocages (NCO HNCs), NCO nanowires (NCO NWs) and NF provide a fast electron transfer path, improve the conductivity, accelerate the kinetic reaction rate, and enhance the structural stability. When assessed as an electrode for the oxygen evolution reaction (OER), the NCO/NCO/NF hybrid composite exhibits a low overpotential of 310 mV at 10 mA cm and current density retention of 91% after a 100 h oxidation reaction, which indicates that it has excellent catalytic activity and durability in the electrocatalytic OER.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt02985aDOI Listing

Publication Analysis

Top Keywords

wire-penetrated-cage hierarchical
12
nco/nco/nf hybrid
12
hybrid composite
12
nicoo/nicoo/ni foam
8
composite wire-penetrated-cage
8
oxygen evolution
8
evolution reaction
8
hierarchical structure
8
growth nico-mof
4
nico-mof derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!