Predominant factors influencing reactive oxygen species in cancer stem cells.

J Cell Biochem

Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India.

Published: January 2024

Reactive oxygen species (ROS) and its related signaling pathways and regulating molecules play a major role in the growth and development of cancer stem cells. The concept of ROS and cancer stem cells (CSCs) has been gaining much attention since the past decade and the evidence show that these CSCs possess robust self-renewal and tumorigenic potential and are resistant to conventional chemo- and radiotherapy and believed to be responsible for tumor progression, metastasis, and recurrence. It seems reasonable to say that cancer can be cured only if the CSCs are eradicated. ROS are Janus-faced molecules that can regulate cellular physiology as well as induce cytotoxicity, depending on the magnitude, duration, and site of generation. Unlike normal cancer cells, CSCs expel ROS efficiently by upregulating ROS scavengers. This unique redox regulation in CSCs protects them from ROS-mediated cell death and nullifies the effect of radiation, leading to chemoresistance and radioresistance. However, how these CSCs control ROS production by scavenging free radicals and how they maintain low levels of ROS is a challenging to understand and these attributes make CSCs as prime therapeutic targets. Here, we summarize the mechanisms of redox regulation in CSCs, with a focus on therapy resistance, its various pathways and microRNAs regulation, and the potential therapeutic implications of manipulating the ROS levels to eradicate CSCs. A better understanding of these molecules, their interactions in the CSCs may help us to adopt proper control and treatment measures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.30506DOI Listing

Publication Analysis

Top Keywords

cancer stem
12
stem cells
12
cscs
10
reactive oxygen
8
oxygen species
8
ros
8
cells cscs
8
redox regulation
8
regulation cscs
8
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!