Ruthenium nitrosyl (RuNO) complexes continue to attract significant research interest due to several appealing features that make these photoactivatable nitric oxide (NO˙) donors attractive for applications in photoactivated chemotherapy. Interesting examples of molecular candidates capable of delivering cytotoxic concentrations of NO˙ in aqueous media have been discussed. Nevertheless, the question of whether most of these highly polar and relatively large molecules are efficiently incorporated by cells remains largely unanswered. In this paper, we present the synthesis and the chemical, photophysical and photochemical characterization of RuNO complexes functionalized with 17α-ethinylestradiol (), a semisynthetic steroidal hormone intended to act as a molecular Trojan horse for the targeted delivery of RuNO complexes. The discussion is centered around two main molecular targets, one containing (EE-Phtpy-RuNO) and a reference compound lacking this biological recognition fragment (Phtpy-RuNO). While both complexes displayed similar optical absorption profiles and NO˙ release efficiencies in aqueous media, important differences were found regarding their cellular uptake towards dermal fibroblasts, with EE-Phtpy-RuNO gratifyingly displaying a remarkable 10-fold increase in cellular uptake when compared to Phtpy-RuNO, thus demonstrating the potential drug-targeting capabilities of this biomimetic steroidal conjugate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03480aDOI Listing

Publication Analysis

Top Keywords

cellular uptake
12
runo complexes
12
trojan horse
8
ruthenium nitrosyl
8
aqueous media
8
horse approach
4
approach enhancing
4
enhancing cellular
4
uptake ruthenium
4
nitrosyl complex
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.

View Article and Find Full Text PDF

Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies.

Biochim Biophys Acta Rev Cancer

January 2025

Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:

Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs.

View Article and Find Full Text PDF

Self-assembled aptamer nanoparticles for enhanced recognition and anticancer therapy through a lysosome-independent pathway.

Acta Biomater

January 2025

Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China. Electronic address:

Aptamers and aptamer-drug conjugates (ApDCs) have shown some success as targeted therapies in cancer theranostics. However, their stability in complex media and their capacity to evade lysosomal breakdown still need improvement. To address these challenges, we herein developed a one-step self-assembly strategy to improve the stability of aptamers or ApDCs, while simultaneously enhancing their delivery performance and therapeutic efficiency through a lysosome-independent pathway.

View Article and Find Full Text PDF

Ultrasound-assisted efficient targeting of doxorubicin to the tumor microenvironment by lyso-thermosensitive liposomes of varying phase transition temperatures.

Eur J Pharm Sci

January 2025

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!