This study presents a rapid microfluidic paper-based analytical device (μPAD) capable of simultaneously monitoring Gram-negative bacteria and nitrite ions (NO) for water quality monitoring. We utilize gold nanoparticles (AuNPs) functionalized with polymyxin molecules (AuNPs@polymyxin) to cause color change due to aggregation for the detection of Gram-negative bacteria, and antiaggregation in the presence of -phenylenediamine (OPD) for NO detection. In this study, () serves as the model of a Gram-negative bacterium. Using the developed μPADs, the color changes resulting from aggregation and antiaggregation reactions are measured using a smartphone application. The linear detection ranges from 5.0 × 10 to 5.0 × 10 CFU/mL ( = 0.9961) for and 0.20 to 2.0 μmol/L ( = 0.995) for NO. The detection limits were determined as 2.0 × 10 CFU/mL for and 0.18 μmol/L for NO. Notably, the newly developed assay exhibited high selectivity with no interference from Gram-positive bacteria. Additionally, we obtained acceptable recovery for monitoring and NO in drinking water samples with no significant difference between our method and a commercial assay by test validation. The sensor was also employed for assessing the quality of the pond and environmental water source. Notably, this approach can also be applied to human urine samples with satisfactory accuracy. Furthermore, the assay's stability is extended due to its reliance on AuNPs rather than reagents like antibodies and enzymes, reducing costs and ensuring long-term viability. Our cost-effective μPADs therefore provide a real-time analysis of both contaminants, making them suitable for assessing water quality in resource-limited settings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c01769DOI Listing

Publication Analysis

Top Keywords

gram-negative bacteria
12
analytical device
8
bacteria nitrite
8
nitrite ions
8
ions water
8
water samples
8
water quality
8
water
5
gold nanomaterial-based
4
nanomaterial-based microfluidic
4

Similar Publications

Therapeutic potential of Bacillus-derived lipopeptides in controlling enteropathogens and modulating immune responses to mitigate post-weaning diarrhea in swine.

Vet Res Commun

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.

Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).

View Article and Find Full Text PDF

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion.

Arch Microbiol

January 2025

Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.

Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.

View Article and Find Full Text PDF

Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish.

Curr Microbiol

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.

Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.

View Article and Find Full Text PDF

Helicobacter pylori and its role in the pathogenesis of follicular gastritis: an overview.

Rev Gastroenterol Peru

January 2025

Infectious Diseases and Cancer Research Group, Centro de Investigaciones Clinicas, Fundacion Hospital San Pedro, Pasto, Nariño, Colombia; Colombian Research Group on Helicobacter pylori, Bogota D.C., Colombia.

The role of Helicobacter pylori in the pathogenesis of peptic ulcers and gastric adenocarcinoma is widely known; however, it is not entirely understood how bacterial infection is closely related to the genesis of follicular gastritis and some types of gastric lymphoma. Diagnosing and pathogenic mechanisms follicular gastritis remain challenging. Therefore, this article aims to examine the role of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!