A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct Electrochemical Synthesis of Metal-Organic Frameworks: Cu (BTC) and Cu(TCPP) on Copper Thin films and Copper-Based Microstructures. | LitMetric

Cu thin films and Cu O microstructures were partially converted to the Metal-Organic Frameworks (MOFs) Cu (BTC) or Cu(TCPP) using an electrochemical process with a higher control and at milder conditions compared to the traditional solvothermal MOF synthesis. Initially, either a Cu thin film was sputtered, or different kinds of Cu or Cu O microstructures were electrochemically deposited onto a conductive ITO glass substrate. Then, these Cu thin films or Cu-based microstructures were subsequently coated with a thin layer of either Cu (BTC) or Cu(TCPP) by controlled anodic dissolution of the Cu-based substrate at room temperature and in the presence of the desired organic linker molecules: 1,3,5-benzenetricarboxylic acid (BTC) or photoactive 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP) in the electrolyte. An increase in size of the Cu micro cubes with exposed planes [100] of 38,7 % for the Cu O@Cu (BTC) and a 68,9 % increase for the Cu O@Cu(TCPP) was roughly estimated. Finally, XRD, Raman spectroscopy and UV-vis absorption spectroscopy were used to characterize the initial Cu films or Cu-based microstructures, and the obtained core-shell Cu O@Cu(BTC) and Cu O@Cu(TCPP) microstructures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202300378DOI Listing

Publication Analysis

Top Keywords

btc cutcpp
12
thin films
12
metal-organic frameworks
8
films cu-based
8
cu-based microstructures
8
microstructures
6
btc
5
thin
5
direct electrochemical
4
electrochemical synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!