Sound Speed Estimation for Distributed Aberration Correction in Laterally Varying Media.

IEEE Trans Comput Imaging

Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Electrical Engineering, University of Rochester, Rochester, NY, USA.

Published: March 2023

Spatial variation in sound speed causes aberration in medical ultrasound imaging. Although our previous work has examined aberration correction in the presence of a spatially varying sound speed, practical implementations were limited to layered media due to the sound speed estimation process involved. Unfortunately, most models of layered media do not capture the lateral variations in sound speed that have the greatest aberrative effect on the image. Building upon a Fourier split-step migration technique from geophysics, this work introduces an iterative sound speed estimation and distributed aberration correction technique that can model and correct for aberrations resulting from laterally varying media. We first characterize our approach in simulations where the scattering in the media is known a-priori. Phantom and in-vivo experiments further demonstrate the capabilities of the iterative correction technique. As a result of the iterative correction scheme, point target resolution improves by up to a factor of 4 and lesion contrast improves by up to 10.0 dB in the phantom experiments presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665028PMC
http://dx.doi.org/10.1109/tci.2023.3261507DOI Listing

Publication Analysis

Top Keywords

sound speed
24
speed estimation
12
aberration correction
12
estimation distributed
8
distributed aberration
8
laterally varying
8
varying media
8
layered media
8
correction technique
8
iterative correction
8

Similar Publications

Estimation of the spatial variability of the New England Mud Patch geoacoustic properties using a distributed array of hydrophones and deep learninga).

J Acoust Soc Am

December 2024

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones.

View Article and Find Full Text PDF

Statement Of The Problem: One of the most important factors in the clinical longevity of composite resin restorations is proper adhesion, which is achieved using phosphoric acid. Different phosphoric acid products might affect the micro-shear bond strength of composite resin to enamel.

Purpose: The present study aimed to evaluate the micro-shear bond strength of composite resin to sound enamel using six different brands of acid-etch agents.

View Article and Find Full Text PDF

Cavitation dynamics and thermodynamic effect of R134a refrigerant in a Venturi tube.

Ultrason Sonochem

December 2024

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

Cavitation plays a crucial role in the reliability of components in refrigeration systems. The properties of refrigerants change significantly with temperature, thereby amplifying the impact of thermodynamic effects. This study, based on the Large Eddy Simulation (LES) method and the Schnerr-Sauer (S-S) cavitation model, investigates the transient cavitating flow characteristics of the R134a refrigerant in a Venturi tube (VT).

View Article and Find Full Text PDF

A comparative study of experimental and simulated ultrasound beam propagation through cranial bones.

Phys Med Biol

December 2024

Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Transcranial ultrasound is used in a variety of treatments, including neuromodulation, opening the blood-brain barrier (BBB), and high intensity focused ultrasound (HIFU) therapies. To ensure safety and efficacy of these treatments, numerical simulations of the ultrasound field within the brain are used for treatment planning and evaluation. This study investigates the accuracy of numerical modelling of the propagation of focused ultrasound through cranial bones.

View Article and Find Full Text PDF

Male crickets sing to attract females for mating. Sound is produced by tegminal stridulation, where one wing bears a plectrum and the other a wing vein modified with cuticular teeth. The carrier frequency ( ) of the call is dictated by the wing resonance and the rate of tooth strikes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!