Chronological analysis of periodontal bone loss in experimental periodontitis in mice.

Clin Exp Dent Res

Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of Sao Paulo-USP, Ribeirão Preto SP, Brazil.

Published: December 2023

Objectives: Periodontal disease is understood to be a result of dysbiotic interactions between the host and the biofilm, causing a unique reaction for each individual, which in turn characterizes their susceptibility. The objective of this study was to chronologically evaluate periodontal tissue destruction induced by systemic bacterial challenge in known susceptible (BALB/c) and resistant (C57BL/6) mouse lineages.

Material And Methods: Animals, 6-8 weeks old, were allocated into three experimental groups: Negative control (C), Gavage with sterile carboxymethyl cellulose 2%-without bacteria (Sham), and Gavage with carboxymethyl cellulose 2% + Porphyromonas gingivalis (Pg-W83). Before infection, all animals received antibiotic treatment (sulfamethoxazole/trimethoprim, 400/80 mg/5 mL) for 7 days, followed by 3 days of rest. Microbial challenge was performed 3 times per week for 1, 2, or 3 weeks. After that, the animals were kept until the completion of 42 days of experiments, when they were euthanized. The alveolar bone microarchitecture was assessed by computed microtomography.

Results: Both C57BL/6 and BALB/c mice exhibited significant bone volume loss and lower trabecular thickness as well as greater bone porosity compared to the (C) and (Sham) groups after 1 week of microbial challenge (p < .001). When comparing only the gavage groups regarding disease implantation, time and lineage, it was possible to observe that within 1 week of induction the disease was more established in BALB/c than in C57BL/6 (p < .05).

Conclusions: Our results reflected that after 1 week of microbial challenge, there was evidence of alveolar bone loss for both lineages, with the loss observed in BALB/c mice being more pronounced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728515PMC
http://dx.doi.org/10.1002/cre2.806DOI Listing

Publication Analysis

Top Keywords

carboxymethyl cellulose
8
microbial challenge
8
chronological analysis
4
analysis periodontal
4
bone
4
periodontal bone
4
bone loss
4
loss experimental
4
experimental periodontitis
4
periodontitis mice
4

Similar Publications

A carboxymethyl cellulose-based pH-responsive chlorine dioxide release film for strawberry preservation.

Int J Biol Macromol

January 2025

Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:

Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF
Article Synopsis
  • Polymers are being studied as eco-friendly alternatives to fluorinated foam extinguishing agents, focusing on how they affect the performance of non-fluorinated foams.
  • The research examines the impact of xanthan gum, sodium carboxymethyl cellulose, and gelatin on various properties such as viscosity, conductivity, and foam stability of a specific siloxane-based mixture.
  • Results indicate that while the polymers increased viscosity and conductivity, they also decreased foamability, with gelatin enhancing surface activity and contributing to prolonged drainage times and film stability.
View Article and Find Full Text PDF

Introduction And Objective: Type 2 Diabetes is a common and chronic metabolic disease. Complementary and alternative medicine can provide a suitable option for demands for new treatments. Therefore, the present study aimed to investigate the effect of Persian medicine on the glycemic status of patients with Type 2 Diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the rheology (flow behavior) of ingested fluids affects swallowing and the physiological responses during deglutition, specifically comparing xanthan gum (XG) and sodium carboxymethylcellulose gum (CMC) in healthy adults.
  • Results showed that CMC had significantly higher viscosity than XG at higher shear rates (300 s), leading to increased flow resistance during swallowing, indicated by higher intrabolus pressure and altered relaxation times of the upper esophageal sphincter (UES).
  • The findings suggest that the differences in shear viscosity of these fluids affect pharyngeal function during swallowing, highlighting the importance of fluid properties over standardized viscosity levels (IDDSI).
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!