Consumption of a Western diet (WD) is known to increase the risk of obesity. Short or medium chain fatty acids influence energy metabolism, and triacetin, a synthetic short chain triacylglyceride, has been shown to lower body fat under normal conditions. This study aimed to investigate if triacetin as part of a WD modifies rat weight and body fat. Male rats were fed a control diet or WD for 8 weeks. At week 8, rats in the WD group were maintained on a WD diet or switched to a WD diet containing 30% energy from medium-chain triacylglyceride (WD-MCT) or triacetin (WD-T) for another 8 weeks. At week 16, rats were euthanized and liver, adipose and blood were collected. Tissue fatty acids (FAs) were quantified by gas chromatography (GC) and hepatic FAs were measured by GC-combustion-isotope ratio mass spectrometry for δ C-palmitic acid (PAM)-a novel marker of de novo lipogenesis (DNL). Rats fed WD-T had a body weight not statistically different to the control group, and gained less body weight than rats fed WD alone. Furthermore, WD-T fed rats had a lower fat mass, and lower total liver and plasma FAs compared to the WD group. Rats fed WD-T did not differ from WD in blood ketone or glucose levels, however, had a significantly lower hepatic δ C-PAM value than WD fed rats; suggestive of lower DNL. In summary, we show that triacetin has the potential to blunt weight gain and adipose tissue accumulation in a rodent model of obesity, possibly due to a decrease in DNL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lipd.12381DOI Listing

Publication Analysis

Top Keywords

rats fed
16
fed wd-t
12
medium chain
8
weight gain
8
model obesity
8
fatty acids
8
body fat
8
rats
8
8 weeks week
8
week rats
8

Similar Publications

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: Consuming prebiotics demonstrated therapeutic potential against obesity, as illustrated by our previous study on xylooligosaccharide (XOS), revealing that XOS reduced adiposity, diminished systemic inflammation, and restored cognitive function in obese insulin-resistant rats through the gut-brain axis. Fresh bananas at various ripening stages are being transformed into snacks, indicating potential as prebiotic-based treats enriched with fructooligosaccharide and inulin. Despite those findings, there remains a notable gap in the literature concerning the impact of these prebiotic-based snacks on brain inflammation, reactive oxygen species (ROS) production, and cognitive function in high-fat diet (HFD)-induced obese rats.

View Article and Find Full Text PDF

Background: Hypertension is a leading risk factor for the development of Alzheimer's disease and Alzheimer's disease-related dementia (AD/ADRD), which is closely linked with cerebral vascular inflammation and dysfunction. We previously found that high-salt-treated Dahl Salt-Sensitive (SS) rats displayed blood-brain barrier (BBB) leakage, astrocyte activation, neurodegeneration, and cognitive impairments. CD14 functions in the Toll-like receptor 4 (TLR4) complex to initiate proinflammatory signaling events in response to LPS.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: Excessive high-fat diet (HFD) consumption develops the obese pre-diabetic condition, which initiates neuroinflammation and numerous brain pathologies, resulting in cognitive decline (1). A cinnamamide derivative compound (2i-10) is recently identified as a novel myeloid differentiation factor 2 (MD-2) inhibitor, and has been shown to attenuate inflammation via toll-like receptor 4 (TLR4) signaling pathway (2). However, the effects of 2i-10 on the neuroinflammation, brain pathologies and cognitive function in the obese pre-diabetic rats have never been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!