A highly robust, concrete-inspired superhydrophobic nanocomposite coating.

Nanoscale

State Key Laboratory of Aerodynamics, Mianyang Sichuan 621000, P.R. China.

Published: December 2023

AI Article Synopsis

  • Durability remains a major challenge for practical applications of superhydrophobic surfaces, particularly due to the need for robust coatings that utilize nanoparticles.
  • Drawing inspiration from concrete, researchers created a superhydrophobic coating using a specially formulated hybrid resin and various micro/nano fillers to enhance water repellency and durability.
  • The resulting coating demonstrated impressive resistance to abrasion and maintained superhydrophobicity under severe testing conditions, indicating potential uses in self-cleaning, anti-icing, and anti-fouling applications across various industries.

Article Abstract

Durability is still the main issue hindering the practical applications of superhydrophobic surfaces. In the case of superhydrophobic coatings, employing nanoparticles for constructing and retaining superhydrophobic surfaces without lowering the robustness is still a conundrum. Herein, inspired by concrete, which has a high filler portion and high robustness, we fabricated a superhydrophobic coating using a synthesized hydrophobic organic/inorganic hybrid resin and categorized micro/nano fillers with varying sizes. The hybrid resin improved the hydrophobicity and robustness of the coating. Also, by optimizing the content of categorized wearable (silica sand with varying sizes)/functional (aluminum nanoparticles)/low-surface-energy (PTFE) phases, the prepared superhydrophobic surfaces could achieve long abrasion distance coupled with a high retention rate. Also, the prepared sample retained its superhydrophobicity after abrasion by sandpaper (180 grit) for 10 m under a pressure as high as 22.5 kPa or 600 grit sandpaper for 12.8 m under the same pressure or when impacted by 1400 g sand particles from 30 cm. Also, the coating had a strong adhesion of 5B with the substrate. Thus, the designed attractive materials have the potential for self-cleaning, anti-icing, and anti-fouling applications in industries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr04296kDOI Listing

Publication Analysis

Top Keywords

superhydrophobic surfaces
12
hybrid resin
8
superhydrophobic
6
highly robust
4
robust concrete-inspired
4
concrete-inspired superhydrophobic
4
superhydrophobic nanocomposite
4
coating
4
nanocomposite coating
4
coating durability
4

Similar Publications

Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.

View Article and Find Full Text PDF

Lobelia-Inspired Photothermal Storage Flexible Film for Efficient Deicing.

Small Methods

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.

The insufficient density and discontinuity of solar energy of photothermal superhydrophobic flexible film seriously affect the practical application. Light energy harvesting and heat energy storage are effective ways to solve this problem. Inspired by the viscous temperature-regulating material within the inflorescence of Lobelia telekii and the arrangement of bracts on its surface, a flexible film for photoheat storage is proposed that integrated a three-order photoheat trap and one-order heat storage.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil-Water Separation.

Polymers (Basel)

January 2025

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.

View Article and Find Full Text PDF

Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.

Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!