Short-chain fatty acids (SCFAs), as the main metabolites of gut microbiota, are recognized as crucial players in the host's inflammatory response and metabolic disease. Imaging the spatial distributions and calculating the accurate contents of SCFAs in the heterogeneous intestinal tissue are critical to reveal their biological functions. Here, we develop an isotope-coded on-tissue derivatization method combined with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to map the spatial expressions of SCFAs in the colon tissue based on pair-labeled N,N,N-trimethyl-2-(piperazin-1-yl)ethan-1-aminium iodide (TMPA) and D-TMPA. A noticeable increase in the MALDI-MSI sensitivity of SCFAs was achieved after on-tissue derivatization, which enables the visualization of acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, hydroxy acetic acid, and hydroxy propionic acid in the colon tissue. Moreover, the introduction of D-TMPA-tagged SCFAs as internal standards can significantly reduce quantitation deviation from the matrix effects, ensuring the quantitative MALDI-MSI of SCFAs. We further used this method to characterize the spatial alterations of SCFAs in the colon tissues of mice with enterocolitis. The development of this strategy provides a reliable approach to image the spatial expressions of SCFAs in tissues and paves an insight way to study the roles of SCFAs in the gut microbiota and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c03308DOI Listing

Publication Analysis

Top Keywords

on-tissue derivatization
12
scfas
9
isotope-coded on-tissue
8
mass spectrometry
8
spectrometry imaging
8
short-chain fatty
8
fatty acids
8
gut microbiota
8
spatial expressions
8
expressions scfas
8

Similar Publications

Mass spectrometry-based investigation of the heterogeneous glycoproteome from complex biological specimens is a robust approach to mapping the structure, function, and dynamics of the glycome and proteome. Sampling whole wet tissues often provides a large amount of starting material; however, there is a reasonable variability in tissue handling prior to downstream processing steps, and it is difficult to capture all the different biomolecules from a specific region. The on-slide tissue digestion approach, outlined in this protocol chapter, is a simple and cost-effective method that allows comprehensive mapping of the glycoproteome from a single spot of tissue of 1 mm or greater diameter.

View Article and Find Full Text PDF

Unraveling Spatiotemporal Metabolic Perturbation of Amino Acids Associated with Ischemia-Reperfusion Injury by MALDI MS Imaging.

Mol Neurobiol

December 2024

Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Cancer Center, Hangzhou, Zhejiang, China.

Various complex metabolic perturbations are involved in cerebral ischemia-reperfusion (I/R) injury. However, limited data have been reported on dynamic spatiotemporal metabolic perturbations of amino acids (AAs) in I/R injured rat brains. In this work, a combination of laser-assisted chemical transfer (LACT) and hexafluoroisopropanol (HFIP) was applied to the enhancement of on-tissue derivatization of AAs for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of their dynamic spatiotemporal changes during I/R injury.

View Article and Find Full Text PDF
Article Synopsis
  • Pyruvate and lactate are key end products of glycolysis, produced under different oxygen conditions, and play a crucial role in energy metabolism and various diseases like tumors and diabetes.
  • The research focuses on developing a new method using MALDI-MSI for imaging these metabolites in tissues due to the challenges of low detection sensitivity in current imaging techniques.
  • The study successfully demonstrated enhanced detection sensitivity for pyruvate and lactate in mouse testes, indicating that this novel method can also be applied to visualize a range of carboxyl-containing metabolites in the body.
View Article and Find Full Text PDF

The distribution of small biomolecules, particularly amino acids (AAs), differs between normal cells and cancer cells. Imaging this distribution is crucial for gaining a deeper understanding of their physiological and pathological significance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides accurate visualization information.

View Article and Find Full Text PDF

The immune benefits of vitamin D3 supplementation beyond calcium and phosphate maintenance are highly clinically debated. Kidney expression of CYP27B1 is the source of endocrine, circulating 1,25(OH)2D3 (active form of vitamin D) that maintains serum calcium and phosphate. 1,25(OH)2D3 may also be made by the CYP27B1 enzyme in nonrenal cells, like immune cells, in a process driven by cellular availability of 25(OH)D3 and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!