Transcriptomic remodeling of gastric cells by Helicobacter pylori outer membrane vesicles.

Helicobacter

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

Published: January 2024

Background: Outer membrane vesicles (OMVs) are spontaneously released by Gram-negative bacteria and influence bacteria-host interactions by acting as a delivery system for bacterial components and by interacting directly with host cells. Helicobacter pylori, a pathogenic bacterium that chronically colonizes the human stomach, also sheds OMVs, and their impact on bacterial-mediated diseases is still being elucidated.

Materials And Methods: Transcriptomic profiling of the human gastric cell line MKN74 upon challenge with H. pylori OMVs compared to control and infected cells was performed using the Ion AmpliSeq™ Transcriptome Human Gene Expression Panel to understand the gene expression changes that human gastric epithelial cells might undergo when exposed to H. pylori OMVs.

Results: H. pylori OMVs per se modify the gene expression profile of gastric epithelial cells, adding another layer of (gene) regulation to the already complex host-bacteria interaction. The most enriched pathways include those related to amino acid metabolism, mitogen-activated protein kinase signaling, autophagy, and ferroptosis, whereas the cell cycle, DNA replication, and DNA repair were the most downregulated. The transcriptomic changes induced by OMVs were mostly similar to those induced by the parental bacteria, likely amplifying the effects of the bacterium itself.

Conclusions: Our data provide a valuable portrayal of the transcriptomic remodeling of gastric cells induced by H. pylori OMVs. It demonstrates the breadth of cellular pathways and genes affected by OMVs, most previously unreported, which can be further dissected for the underlying molecular mediators and explored to understand the pathobiology of the full spectrum of H. pylori-mediated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/hel.13031DOI Listing

Publication Analysis

Top Keywords

h pylori omvs
12
gene expression
12
transcriptomic remodeling
8
remodeling gastric
8
gastric cells
8
cells helicobacter
8
helicobacter pylori
8
outer membrane
8
membrane vesicles
8
human gastric
8

Similar Publications

Effects of Yersinia pseudotuberculosis outer membrane vesicles on Pseudomonas aeruginosa antigens immune response.

PLoS One

December 2024

Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China.

Outer membrane vesicles (OMVs) are immunogenic self-adjuvanting vesicles produced by Gram-negative bacteria such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis. While the effects of OMVs on different antigens immune stimulation are not clear. In this study, we constructed recombinant Yersinia pseudotuberculosis ΔlpxL strain,with pBlue-PcrV and pBlue-OprF/I, and then purified ΔlpxL rOMVPcrV (rOMVyp2P)and ΔlpxL rOMVOprF/I (rOMVyp2F) and analyzed its effect on immune response and protection against Pseudomonas aeruginosa PAO1 infection.

View Article and Find Full Text PDF

Utilizing Engineered Bacteria as "Cell Factories" for Intracellular RNA-Loaded Outer Membrane Vesicles' Self-Assembly in Tumor Treatment.

ACS Nano

December 2024

School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China.

Delivery systems play a crucial role in RNA therapy. However, the current RNA delivery system involves complex preparation and transport processes, requiring RNA preassembly , transportation at low temperatures throughout, and possibly multiple injections for improved therapeutic efficacy. To address these challenges, we developed a simple and efficient RNA delivery system.

View Article and Find Full Text PDF

Porphyromonas gingivalis (Pg) is a keystone bacterium associated with systemic diseases, such as diabetes mellitus and Alzheimer's disease. Outer membrane vesicles (OMVs) released from Pg have been implicated in systemic diseases by delivering Pg virulence factors to host cells in distant organs and inducing cellular dysfunction. Pg OMVs also have the potential to enter distant organs via the bloodstream.

View Article and Find Full Text PDF

Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders.

Expert Opin Drug Deliv

December 2024

Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China.

Introduction: Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment.

View Article and Find Full Text PDF

A Recombinant Strain Expressing ETEC Heat-Labile Enterotoxin B Subunit Shows Promise for Vaccine Development via OMVs.

Int J Mol Sci

November 2024

Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain.

Diarrheal diseases caused by and enterotoxigenic (ETEC) are significant health burdens, especially in resource-limited regions with high child mortality. In response to the lack of licensed vaccines and rising antibiotic resistance for these pathogens, this study developed a recombinant strain with the novel incorporation of the gene for the heat-labile enterotoxin B (LTB) subunit of ETEC directly into 's genome, enhancing stability and consistent production. This approach combines the immunogenic potential of LTB with the antigen delivery properties of outer membrane vesicles (OMVs), aiming to provide cross-protection against both bacterial pathogens in a stable, non-replicating vaccine platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!