https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37996518&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3799651820231126
2045-23221312023Nov23Scientific reportsSci RepAnnular one-dimensional photonic crystals for salinity sensing.20593205932059310.1038/s41598-023-47205-6The use of annular one-dimensional (1D) photonic crystals (PCs) for salinity sensing is studied in this research. Annular 1D-PCs provide small and integrated structures that facilitate the creation of portable and miniaturized sensor equipment appropriate for field use. In order to generate annular 1D-PCs, the research explores the finite element method (FEM) simulation technique utilizing the COMSOL Multiphysics approach, highlighting the significance of exact control over layer thickness and uniformity. Furthermore, we construct a 1D annular PCs structure in the form [Formula: see text], where A is silicon ([Formula: see text]) and B is silicon dioxide ([Formula: see text]) of 40 nm and 70 nm, respectively, with a number of periods equal to 9. By incorporating a central defect layer of saline water (220 nm thickness), the sensor achieves optimum performance at normal incidence with a sensitivity (S) of [Formula: see text], a quality factor (Q) of 10.22, and a figure of merit (FOM) of [Formula: see text]. The design that is suggested has several advantages over past work on planners and annular 1D-PCs, including ease of implementation, performance at normal incidence, and high sensitivity.© 2023. The Author(s).SayedHassanHTH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni Suef, 62514, Egypt.SwillamMohamed AMADepartment of Physics, The American University in Cairo, Cairo, Egypt.AlyArafa HAHTH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni Suef, 62514, Egypt. arafa.hussien@science.bsu.edu.eg.engUSAIDAmerican University in CairoJournal Article20231123
EnglandSci Rep1015632882045-2322IMThe authors declare no competing interests.
20239420231110202311240432023112404220231123233120231123epublish37996518PMC1066749910.1038/s41598-023-47205-610.1038/s41598-023-47205-6Sayed H, Krauss TF, Aly AH. Versatile photonic band gap materials for water desalination. Optik Int. J. Light Electron Opt. 2020;219:165160. doi: 10.1016/j.ijleo.2020.165160.10.1016/j.ijleo.2020.165160Sayed H, Aly AH, Krauss TF. Photonic crystals umbrella for thermal desalination: Simulation study. Sci. Rep. 2022;12:21499. doi: 10.1038/s41598-022-24336-w.10.1038/s41598-022-24336-wPMC974779636513708Fan S, Joannopoulos JD. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B. 2002;65(23):235112. doi: 10.1103/PhysRevB.65.235112.10.1103/PhysRevB.65.235112H. Sayed, S. Alamri, Z. Matar and A.H. Aly, Salinity Sensor Based on 1D Photonic Crystals by Tamm Resonance with Different Geometrical Shapes. Plasmonic (2021).Ali NB, Alsaif H, Trabelsi Y, Chughtai MT, Dhasarathan V, Kanzari M. High sensitivity to salinity-temperature using one-dimensional deformed photonic crystal. Coatings. 2021;11:713. doi: 10.3390/coatings11060713.10.3390/coatings11060713Qutb SR, Aly AH, Sabra W. Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material. Int. J. Modern Phys. B. 2021;35(01):2150012. doi: 10.1142/S0217979221500120.10.1142/S0217979221500120Sayed H, Aly AH. Salinity optical sensor by using two-dimensional photonic crystals: Computational study. Mater. Sci. Eng. B. 2021;269:115169. doi: 10.1016/j.mseb.2021.115169.10.1016/j.mseb.2021.115169Sayed H, Al-Dossari M, Ismail MA, et al. Performance analysis of the salinity based on hexagonal two-dimensional photonic crystal: Computational study. Sci. Rep. 2022;12:22133. doi: 10.1038/s41598-022-25608-1.10.1038/s41598-022-25608-1PMC978023436550138Armani AM, et al. Label-free, single-molecule detection with optical microcavities. Science. 2007;317(5839):783–787. doi: 10.1126/science.1145002.10.1126/science.114500217615303Yetisen AK, et al. Photonic hydrogels for rapid monitoring of water content in organic solvents. ACS Appl. Mater. Interfaces. 2013;5(16):8003–8007.Gandhi S, Suneet Kumar A. Detection of wide variety of pathogens by using one-dimensional biosensor based on annular photonic crystal. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.203.10.1016/j.matpr.2023.05.203Gandhia S, Awasthi SK, Aly AH. Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 2021;11:26655–26665. doi: 10.1039/D1RA04166E.10.1039/D1RA04166EPMC903731435479998Ameen AA, Elsayed HA, Alamri S, Matar ZS, Al-Dossari M, Aly AH. Towards promising platform by using annular photonic crystals to simulate and design useful mask. Photonics. 2021;8:349. doi: 10.3390/photonics8090349.10.3390/photonics8090349Wu Y-K, et al. Photonic crystal surface waves for optical biosensors. Biosensors Bioelectron. 2014;55:147–156.Abdulkarem HM, Almawgani SK, Awasth A, Mehaney GA, Ali HA, Elsayed HS, Ahmed AM. A theoretical approach for a new design of an ultrasensitive angular plasmonic chemical sensor using black phosphorus and aluminum oxide architecture. RSC Adv. 2023;13:16154–16164. doi: 10.1039/D3RA01984E.10.1039/D3RA01984EPMC1022784537260718Zhang J, Li Y, Cao K, et al. Advances in atomic layer deposition. Nanomanuf. Metrol. 2022;5:191–208. doi: 10.1007/s41871-022-00136-8.10.1007/s41871-022-00136-8Paul AK. Design and analysis of photonic crystal fiber plasmonic refractive Index sensor for condition monitoring of transformer oil. OSA Continuum. 2020;3(8):2253–2263. doi: 10.1364/OSAC.399383.10.1364/OSAC.399383Akter S, Ahmed K, El-Naggar SA, Taya SA, Nguyen TK, Dhasarathan V. Highly sensitive refractive index sensor for temperature and salinity measurement of seawater. Optik. 2020;216:164901. doi: 10.1016/j.ijleo.2020.164901.10.1016/j.ijleo.2020.164901Monfared YE. Overview of recent advances in the design of plasmonic fiber-optic biosensors. Biosensors. 2020;10(7):77. doi: 10.3390/bios10070077.10.3390/bios10070077PMC740071232660135Sanjeev S, Alireza A. Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) Metamaterials. Phys. B Condens. Matter. 2016;489:67–72. doi: 10.1016/j.physb.2016.01.036.10.1016/j.physb.2016.01.036Li T, Liu G, Kong H, Yang G, Wei G, Zhou X. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 2023;475:214909. doi: 10.1016/j.ccr.2022.214909.10.1016/j.ccr.2022.214909Shinn M, Robertson WM. Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sensors Actuators B Chem. 2005;105(2):360–364. doi: 10.1016/j.snb.2004.06.024.10.1016/j.snb.2004.06.024Sun J, Chan CC. Photonic bandgap fiber for refractive index measurement. Sensors Actuators B Chem. 2007;128(1):46–50. doi: 10.1016/j.snb.2007.05.037.10.1016/j.snb.2007.05.037Adibi A, et al. Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap. Electron. Lett. 2000;36(16):1376–1378. doi: 10.1049/el:20000973.10.1049/el:20000973Gat N. Imaging spectroscopy using tunable filters: A review. Wavelet Appl. VII. 2000;4056:50–64.James KR, Cant B, Ryan T. Responses of freshwater biota to rising salinity levels and implications for saline water management: A review. Austr. J. Bot. 2003;51(6):703–713. doi: 10.1071/BT02110.10.1071/BT02110Tousoulis D, Antoniades C, Stefanadis C. Evaluating endothelial function in humans: A guide to invasive and non-invasive techniques. Heart. 2005;91(4):553–558. doi: 10.1136/hrt.2003.032847.10.1136/hrt.2003.032847PMC176883315772232Gholizadeh MH, Melesse AM, Reddi L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors. 2016;16:1298. doi: 10.3390/s16081298.10.3390/s16081298PMC501746327537896Adjovu GE, Stephen H, James D, Ahmad S. Overview of the application of remote sensing in effective monitoring of water quality parameters. Remote Sens. 1938;2023:15. doi: 10.3390/rs15071938.10.3390/rs15071938Robinson S, Nakkeeran R. PC based optical salinity sensor for different temperatures. Photonic Sensors. 2012 doi: 10.1007/s13320-012-0055-6.10.1007/s13320-012-0055-6Shamshiri RR, Balasundram SK, Kaviani Rad A, Sultan M, Hameed IA. An overview of soil moisture and salinity sensors for digital agriculture applications. In: Shamshiri RR, Shafian S, editors. Digital Agriculture, Methods and Applications. IntechOpen; 2022.Chen M-S, Wu C-J, Yang T-J. Optical properties of a superconducting annular periodic multilayer structure. Solid State Commun. 2009;149:1888–1893. doi: 10.1016/j.ssc.2009.08.002.10.1016/j.ssc.2009.08.002Yusuf A, Sodiq A, Giwa A, Eke J, Pikuda O, De Luca G, Luque Di Salvo J, Chakraborty S. A review of emerging trends in membrane science and technology for sustainable water treatment. J. Clean. Prod. 2020;266:121867. doi: 10.1016/j.jclepro.2020.121867.10.1016/j.jclepro.2020.121867Quan XH, Fry ES. Empirical equation for the index of refraction of seawater. Appl. Opt. 1995;34:3477–3480. doi: 10.1364/AO.34.003477.10.1364/AO.34.00347721052163Li X, Yang X, Ma J. Design of photonic crystal cavity based on annular lattice for refractive index sensing. Optics Express. 2013;21(10):12139–12148.Zhou R, Cai L, Yang G. Tunable annular photonic crystal slabs for on-chip refractive index sensing. J. Appl. Phys. 2015;118(19):193106.Wang J, He Y, Liu H. Design of photonic crystal fiber refractive index sensor based on bandgap shift. J. Phys. Conf. Ser. 2018;1124(1):012063.Zhao Z, Li F, Wang G. Design of an annular photonic crystal fiber with high birefringence and large flattened negative dispersion. Chin. Optics Lett. 2015;13(1):011604.26368772Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 1973;12:555–563. doi: 10.1364/AO.12.000555.10.1364/AO.12.00055520125343Langer H, Offermann H. On the solubility of sodium chloride in water. J. Crystal Growth. 1982;60(2):389–392. doi: 10.1016/0022-0248(82)90116-6.10.1016/0022-0248(82)90116-6https://www.britannica.com/science/seawater.Byrne, Robert Howard, Mackenzie, Fred T. and Duxbury, Alyn C. "Seawater". Encyclopedia Britannica, 28 Apr. 2022. https://www.britannica.com/science/seawater. Accessed 26 October 2022.Liquid water source: http://www1.lsbu.ac.uk/water/vibrat.html#uv.Vigneswaran D, Ayyanar N, Sharma M, Sumathi M, Mani Rajan MS, Porsezian K. Salinity sensor using photonic crystal fiber. Sensors Actuators A. 2018;269:22–28. doi: 10.1016/j.sna.2017.10.052.10.1016/j.sna.2017.10.052Amiri IS, Paul BK, Ahmed K, Aly AH, Zakaria R, Yupapin P, Vigneswaran D. "Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microwave Opt. Technol. Lett. 2019;61(3):847–852. doi: 10.1002/mop.31612.10.1002/mop.31612Aspnes DE, Studna AA. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B. 1983;27:985–1009. doi: 10.1103/PhysRevB.27.985.10.1103/PhysRevB.27.985Aly AH, Sayed H. Photonic band gap materials and monolayer Solar cell. Surf. Rev. Lett. 2018;25(8):1850103. doi: 10.1142/S0218625X18501032.10.1142/S0218625X18501032Pathania P, Shishodia M. Gain-assisted transition metal ternary nitrides (Ti1−xZrxN) core-shell based sensing of waterborne bacteria in drinking water. Plasmonics. 2019 doi: 10.1007/s11468-019-00927-8.10.1007/s11468-019-00927-8Tan T, Srivastava Y, Manjappa M, Plum E, Singh R. Lattice induced strong coupling and line narrowing of split resonances in metamaterials. Appl. Phys. Lett. 2018;112:201111. doi: 10.1063/1.5026649.10.1063/1.5026649Huang K, et al. A proposal for a high-sensitivity optical MEMS accelerometer with a double-mode modulation system. J. Lightwave Technol. 2021;39(1):303–309. doi: 10.1109/JLT.2020.3023038.10.1109/JLT.2020.3023038Huang K, Yu M, Cheng L, Liu J, Cao L. A proposal for an optical MEMS accelerometer with high sensitivity based on wavelength modulation system. J. Lightwave Technol. 2019;37(21):5474–5478. doi: 10.1109/JLT.2019.2934776.10.1109/JLT.2019.2934776Sayed H, Alamri S, Matar Z, et al. Salinity sensor based on 1D photonic crystals by tamm resonance with different geometrical shapes. Plasmonics. 2022;17:409–422. doi: 10.1007/s11468-021-01534-2.10.1007/s11468-021-01534-2Klimov VV, Pavlov AA, Treshinand IV, Zabkov IV. Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing. J. Phys. D Appl. Phys. 2017;50:285101. doi: 10.1088/1361-6463/aa75e6.10.1088/1361-6463/aa75e6Lheureux G, Monavarian M, Anderson R, DeCrescent RA, Bellessa J, Symonds C, DenBaars SP. Tamm plasmons in metal/nanoporousGaN distributed Bragg reflector cavities for active and passive optoelectronics. Opt. Express. 2020;28(12):17934–17943. doi: 10.1364/OE.392546.10.1364/OE.39254632679995Gandhi S, Kumar Awasthi S, Aly AH. Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 2021;11:26655–26665. doi: 10.1039/D1RA04166E.10.1039/D1RA04166EPMC903731435479998Gandhi S, Kumar Awasthi S. Detection of wide variety of pathogens by using one-dimensional biosensor based on annular photonic crystal. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.203.10.1016/j.matpr.2023.05.203