Rationale And Objectives: Accurate prediction of local recurrence or distant metastasis is critical for developing individualized therapies for locally advanced rectal cancer (LARC) patients after standard therapy. This study aims to develop and validate a multiparameter MRI-based radiomics signature (RS) for prognostic prediction in LARC patients receiving neoadjuvant chemoradiotherapy (nCRT) and total mesorectal excision (TME) and to explore the ability of RS for personalized survival risk stratification.

Materials And Methods: In this multi-center study, 454 patients who received nCRT and TME and completed 3 years of follow-up participated. RS was constructed for prognostic prediction based on features extracted from pretreatment multiparameter MRI in a training cohort (TC; n = 298), which was tested in an internal validation cohort (IVC; n = 75) and further validated in an independent external validation cohort (EVC; n = 81). Furthermore, the ability of RS for personalized survival risk stratification was explored using the Kaplan-Meier survival curves.

Results: The RS model showed satisfactory accuracy for prognostic prediction with AUCs of 0.83, 0.81 and 0.82 in the TC, IVC and EVC, respectively. In addition, RS helped to refine risk stratification for LARC patients on the basis of significantly different 3-year disease-free survival rates, independent of their pathological stage, pre-surgery CEA, and even treatment modality.

Conclusions: The proposed RS can be used not only to predict local recurrence or distant metastasis but also to serve as an effective postoperative survival risk stratification tool for clinicians to facilitate decision-making for LARC patients receiving standard treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2023.10.055DOI Listing

Publication Analysis

Top Keywords

larc patients
16
prognostic prediction
12
survival risk
12
risk stratification
12
mri-based radiomics
8
rectal cancer
8
local recurrence
8
recurrence distant
8
distant metastasis
8
patients receiving
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!