Modeling the percutaneous absorption of solvent-deposited solids over a wide dose range: II. Weak electrolytes.

J Control Release

The James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA. Electronic address:

Published: January 2024

Dermal absorption of weak electrolytes applied to skin from pharmaceutical and cosmetic compositions is an important consideration for both their efficacy and skin safety. We developed a mechanistic, physics-based framework that simulates this process for leave on applications following solvent deposition. We incorporated this framework into our finite dose computational skin permeation model previously tested with nonelectrolytes to generate quantitative predictions for weak electrolytes. To test the model, we analyzed experimental data from an in vitro human skin permeation study of a weak acid (benzoic acid) and a weak base (propranolol) and their sodium and hydrochloride salts from simple, ethanol/water vehicles as a function of dose and ionization state. Key factors controlling absorption are the pH and buffer capacity of the dose solution, the dissolution rate of precipitated solids into a lipid boundary layer and the rate of conversion of the deposited solid to its conjugate form as the nonionized component permeates and (sometimes) evaporates from the skin surface. The resulting framework not only describes the current test data but has the potential to predict the absorption of other weak electrolytes following topical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.11.038DOI Listing

Publication Analysis

Top Keywords

weak electrolytes
16
absorption weak
8
skin permeation
8
weak
6
skin
5
modeling percutaneous
4
absorption
4
percutaneous absorption
4
absorption solvent-deposited
4
solvent-deposited solids
4

Similar Publications

Altering the edge sites of 2D MXenes for electrochemical dinitrogen reduction reaction (ENRR) is widely reported, whereas activation of its relatively inert basal planes is neglected. Herein, the activation and the optimization of the basal planes of TiCT (T = *F, *O, and *OH) MXenes toward enhanced ENRR to ammonia is reported. The balanced surface functionalization in TiCT regulates the ENRR kinetics by regulating the potential of zero charge (E) and the electrochemical work function ( ).

View Article and Find Full Text PDF

The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor.

View Article and Find Full Text PDF

Unlocking Solid-State Sodium-Metal Batteries at -15 °C by Electrolyte Optimization and Interface Regulation.

ACS Appl Mater Interfaces

December 2024

Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China.

Beta-AlO-based solid-state sodium metal batteries are some of the best options for large-scale energy storage systems because of their high energy density, high-level safety, and low cost. Nevertheless, their room-/low-temperature operation remains challenging due to low ionic conductivity of Beta-AlO electrolyte and weak solid-solid contact of the Na/Beta-AlO interface. Herein, an integrated strategy was developed via electrolyte optimization and interface regulation, in which Cu as a stabilizing agent was incorporated into Beta-AlO to improve density and ionic conductivity and the InS interface layer was introduced between the Na anode and solid electrolyte to induce the in situ formation of a mixed conductive layer (Na-In alloy and NaS).

View Article and Find Full Text PDF

The safety and cycling stability of potassium-ion batteries (PIBs) are deeply associated with potassium-ion electrolytes. However, due to the weak Lewis acidity of potassium ions, localized high-concentration electrolytes in PIBs are prone to excessive weak solvation. Herein, we propose an entropy repair strategy for the solvation structure of potassium ions and systematically design a moderately weakly solvated high-entropy localized high-concentration electrolyte.

View Article and Find Full Text PDF

The fluoride-ion battery (FIB) is a post-lithium anionic battery that utilizes the fluoride-ion shuttle, achieving high theoretical energy densities of up to 1393 Wh L without relying on critical minerals. However, developing liquid electrolytes for FIBs has proven arduous due to the low solubility of fluoride salts and the chemical reactivity of the fluoride ion. By introducing a chemically stable electrolyte based on 1,3-dimethylimidazolium [MMIm] bis(trifluoromethanesulfonyl)imide [TFSI] and tetramethylammonium fluoride (TMAF), we achieve an electrochemical stability window (ESW) of 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!