Waste-to-energy: Co-pyrolysis of potato peel and macroalgae for biofuels and biochemicals.

Environ Res

Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Published: February 2024

Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117614DOI Listing

Publication Analysis

Top Keywords

potato peel
12
sargassum angastifolium
12
marine biomass
8
xrd xrf
8
mixed samples
8
waste-to-energy co-pyrolysis
4
co-pyrolysis potato
4
peel macroalgae
4
macroalgae biofuels
4
biofuels biochemicals
4

Similar Publications

Maejo 341 Sweet potato (MSP) is a new purple sweet potato variety cultivated in Northern Thailand, but its health benefits are unknown. This study aimed to investigate its antioxidant, anti-inflammatory, and anti-osteoporotic activities, as well as its anthocyanin content. The peel and flesh of MSP were extracted with ethanol and water.

View Article and Find Full Text PDF

Impact of Citric Acid on the Structure, Barrier, and Tensile Properties of Esterified/Cross-Linked Potato Peel-Based Films and Coatings.

Polymers (Basel)

December 2024

Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Campus Ghent, B-9000 Ghent, Belgium.

The valorization of potato peel side streams for food packaging applications, especially for the substitution of current petrochemical-based oxygen barrier solutions such as EVOH, is becoming increasingly important. Therefore, potato peel-based films and coatings (on PLA) were developed containing 10-50% (/ potato peel) citric acid (CA). To determine the impact of CA concentration on the structure and physicochemical properties of cast films and coatings, ATR-FTIR spectroscopy, moisture adsorption isotherms, tensile properties, light transmittance, oxygen permeability, carbon dioxide transmission rate, and water vapor transmission rate measurements were performed.

View Article and Find Full Text PDF

This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.

View Article and Find Full Text PDF

Carob pulp is a valuable source of cellulose-rich fraction (CRF) for many food applications. This study aimed to obtain and characterize a CRF derived from carob pulp waste after sugar removal and to evaluate its potential use in the 3D printing of cellulose-rich foods. Thus, the extraction of the CRF present in carob pulp (by obtaining the alcohol-insoluble residue) was carried out, accounting for nearly 45% dm (dry matter) of this byproduct.

View Article and Find Full Text PDF

Efficiency of potato peel extract in the preservation of cow butter.

Heliyon

December 2024

Department of Food Engineering, School of Mechanical and Chemical Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha, Ethiopia.

This study investigates that the phenolic compound extracted from the potato peels using ethanol by maceration as a natural preservation agent for cow butter, yielding 10.42 ± 0.03 % phenolic compound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!