Direct evidence of the ability of Pseudomonas aeruginosa and E. coli SulA to dimerize.

Arch Biochem Biophys

Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya 29, Saint-Petersburg, 195251, Russia. Electronic address:

Published: January 2024

AI Article Synopsis

  • The SulA protein in E. coli and similar bacteria inhibits cell division by blocking Z-ring formation through its interaction with FtsZ, though the exact mechanism isn't fully clear.
  • Previous studies on Pseudomonas aeruginosa SulA showed it could dimerize using X-ray crystallography but didn't confirm this in living cells.
  • This paper utilizes a bacterial two-hybrid system to confirm that both P. aeruginosa and E. coli SulA proteins can dimerize.

Article Abstract

The SulA protein of Escherichia coli and related bacteria interacts directly with FtsZ, blocking cell division by disrupting Z-ring formation, yet the precise mechanism remains not fully understood. Previous demonstrations of Pseudomonas aeruginosa SulA's dimerization capability were confined to X-ray crystallography and lacked confirmation under in vivo conditions. Additionally, uncertainty persisted regarding the dimerization potential of E. coli's SulA protein. This paper employs a bacterial two-hybrid system to establish that both P. aeruginosa and E. coli SulA proteins indeed possess the capacity for dimerization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2023.109826DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
8
aeruginosa coli
8
coli sula
8
sula protein
8
direct evidence
4
evidence ability
4
ability pseudomonas
4
sula
4
sula dimerize
4
dimerize sula
4

Similar Publications

Background: A wound must progress through serial steps of healing to achieve structural and functional stability. This process is hampered in chronic wounds and wounds with delayed healing. Wound cover through skin grafting or a flap, or spontaneous healing through epithelization, requires healthy granulation tissue.

View Article and Find Full Text PDF

Beyond the Hayflick Limit: How Microbes Influence Cellular Aging.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran. Electronic address:

Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

In vitro anti-biofilm efficacy of therapeutic low dose 265 nm UVC.

J Photochem Photobiol B

January 2025

Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand. Electronic address:

Purpose: Preclinical studies have confirmed the safety and efficacy of narrowband low-intensity ultraviolet C light (UVC) in managing bacterial corneal infection. To further consolidate these findings, the present study aimed to explore in vitro anti-biofilm efficacy of low-intensity UVC light for its potential use in biofilm-related infections.

Methods: Pseudomonas aeruginosa biofilm was grown in chamber well slides for 48 h and exposed to one of the following challenges: UVC (265 nm wavelength, intensity 1.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen belonging to the γ-proteobacteria family, known to cause pneumonia linked with ventilator use and nosocomial infections. With the increasing prevalence of antibiotic-resistant bacteria, there is a pressing need to identify alternatives to conventional antibiotics. Plant-derived substances (PDSs) offer potential not only as antibacterial agents but also as modulators of antibiotic resistance.

View Article and Find Full Text PDF

Objectives: To evaluate the in vitro susceptibility of recent Gram-negative pathogens collected from pediatric patients to imipenem/relebactam (IMI/REL) and comparator agents.

Methods: From 2018 to 2022, 254 hospitals in 62 countries collected Enterobacterales or P. aeruginosa isolates from patients <18 years old as part of the SMART global surveillance program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!