Microalgae coculture has the potential to promote microalgae biofilm growth. Herein, three two-species cocultured biofilms were studied by determining biomass yields and detailed microstructure parameters, including porosity, average pore length, average cluster length, etc. It was found that biomass yields could reduce by 21-53 % when biofilm porosities decreased from about 35 % to 20 %; while at similar porosities (∼20 %), biomass yields of cocultured biofilms increased by 37 % when they possessed uniform microstructure and small cell-clusters (pores and clusters of 1 ∼ 10 μm accounted for 96 % and 68 %, respectively). By analyzing morphologies and surface properties of cells, it was found that cells with small size, spherical shape, and reduced surface polymers could hinder the cell-clusters formation, thereby promoting biomass yields. The study provides new insights into choosing cocultured microalgae species for improving the biomass yield of biofilm via manipulating biofilm microstructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.130052 | DOI Listing |
BMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFEcol Lett
January 2025
State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.
Microbial traits are critical for carbon sequestration and degradation in terrestrial ecosystems. Yet, our understanding of the relationship between carbon metabolic strategies and genomic traits like genome size remains limited. To address this knowledge gap, we conducted a global-scale meta-analysis of 2650 genomes, integrated whole-genome sequencing data, and performed a continental-scale metagenomic field study.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India. Electronic address:
Polysaccharides, found universally in all living-species, exhibit diverse biochemical structures and play crucial roles in microorganisms, animals, and plants to defend against pathogens, environmental stress and climate-changing. Microbial exopolysaccharides are essential for cell adhesion and stress resilience and using them has notable advantages over synthetic polysaccharides. Exopolysaccharides have versatile structures and physicochemical properties, used in food systems, therapeutics, cosmetics, agriculture, and polymer industries.
View Article and Find Full Text PDFWater Res
January 2025
Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:
Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Maintaining yield goals while reducing nitrate-nitrogen (NO-N) leaching to groundwater is a challenge for potato (Solanum tuberosum) production in the Wisconsin Central Sands as well as across the United States. The objectives of this study were to quantify the effect of conventional and enhanced efficiency nitrogen (N) fertilizers on NO-N leaching, crop yield, and N uptake in potatoes. We compared five N treatments, which include a 0 N control and 280 kg ha as ammonium sulfate and ammonium nitrate (AS/AN), polymer-coated urea (PCU), urea with a urease inhibitor (Urea+UI), or urea with a UI and a nitrification inhibitor (Urea+UI+NI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!