Synergistic effects of hierarchical porous structures and ultra-high pyridine nitrogen doping enhance the oxygen reduction reaction electrocatalytic performance of metal-free laminated lignin-based carbon.

Int J Biol Macromol

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.

Published: January 2024

Construction of non-metallic biomass-carbon based catalysts for fuel cell air cathode applications has attracted great attention in recent years. In this work, a convenient and clean technique was developed to fabrication nitrogen-doped lignin-based hierarchical porous lamellar carbon (N-LHPC) via lignin as the carbon precursor, melamine/urea as the nitrogen source and ZnCO.2HO as the chemical activator. The N-LHPC has a high specific surface area (491.5 m g) and macroporous/mesoporous/microporous structures. The nitrogen doping of N-LHPC can reach 16.37 wt%, with a high pyridinic nitrogen content of 41.39 at.%. N-LHPC exhibits a high half-wave potential (0.87 V) and a large limiting current density (5.75 mA cm) in 0.1 mol KOH media which is comparable to the commercial Pt/C catalysts. Furthermore, N-LHPC was assembled as air cathode catalyst for Zn-air batteries to evaluate its practical catalytic performance, and the power density was as high as 191 mW cm, which was superior to the 20 wt% Pt/C electrocatalyst. This research demonstrates that lignin is a promising carbon source for the fabrication of high catalytic activity and economical electrocatalysts for energy storage systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128292DOI Listing

Publication Analysis

Top Keywords

hierarchical porous
8
nitrogen doping
8
air cathode
8
n-lhpc
5
high
5
synergistic effects
4
effects hierarchical
4
porous structures
4
structures ultra-high
4
ultra-high pyridine
4

Similar Publications

Evaporation-Induced Reticular Growth of UiO-66_NH in Chitosan Films: Adsorption of Iodine.

ACS Appl Mater Interfaces

January 2025

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.

Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.

View Article and Find Full Text PDF

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the degradation of ciprofloxacin (CIP) using a photocatalyst made from CoFeO@3D-TiO and graphene aerogel, achieving complete removal under specific conditions within 60 minutes while showing high reusability.
  • Intermediate products from the degradation process were found to be non-toxic to E. coli, and total organic carbon (TOC) analysis showed 86% mineralization of CIP, indicating successful transformation of non-biological sewage to biodegradable effluent.
  • The research emphasizes the effectiveness of photocatalysis over simple adsorption with a significantly faster reaction rate, showcasing the potential environmental benefits of using the synthesized photocatalyst under visible light.
View Article and Find Full Text PDF
Article Synopsis
  • Na-Se batteries are promising alternatives to lithium-ion batteries due to their high capacity and natural abundance, but face challenges like volume expansion and polyselenide shuttling.
  • The research introduces a novel Se/HPC (Se encapsulated in hierarchically porous carbon) that effectively contains Se, mitigates expansion issues, and enhances charge transfer, resulting in improved electrochemical performance.
  • The study also highlights the beneficial Se─C bond for sodium adsorption and diffusion, suggesting future directions for designing advanced electrode materials using MOF-derived structures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!