Unbiased interrogation of functional lysine residues in human proteome.

Mol Cell

Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China. Electronic address:

Published: December 2023

CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2023.10.033DOI Listing

Publication Analysis

Top Keywords

lysine residues
12
human proteome
8
genetic elements
8
lysine codons
8
cell fitness
8
functional insights
8
lysine
5
unbiased interrogation
4
functional
4
interrogation functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!