Neurological disorders affect a large population, often leading to different levels of disability and resulting in decreased quality of life. Due to the limited recovery obtained from surgical procedures and other medical approaches, a large number of patients with prolonged dysfunction receive neurorehabilitation protocols to improve their neural plasticity and regeneration. However, the poor neural regeneration ability cannot effectively rebuild the tissue integrity and neural functional networks; consequently, the prognoses of neurorehabilitation remain undetermined. To increase the chances of neural regeneration and functional recovery for patients with neurological disorders, regenerative rehabilitation was introduced with combined regenerative medicine and neurorehabilitation protocols to repair neural tissue damage and create an optimized biophysical microenvironment for neural regeneration potential. With the deepening of exosome research, an increasing number of studies have found that the systemic therapeutic effects of neurorehabilitation approaches are mediated by exosomes released by physically stimulated cells, which provides new insight into rehabilitative mechanisms. Meanwhile, exosome therapy also serves as an alternative cell-free therapy of regenerative medicine that is applied in partnership with neurorehabilitation approaches and formulates exosome-based neurological regenerative rehabilitation. In this study, we review the current state of exosome-associated neurorehabilitation. On the one hand, we focus on presenting the varied mediating effects of exosomes in neurorehabilitation protocols of specific neurological pathologies; on the other hand, we discuss the diverse combinations of exosome therapies and neurorehabilitation approaches in the field of neurological regenerative rehabilitation, aiming to increase the awareness of exosome research and applications in the rehabilitation of neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115920DOI Listing

Publication Analysis

Top Keywords

regenerative rehabilitation
16
neurological disorders
16
neurorehabilitation protocols
12
neural regeneration
12
neurorehabilitation approaches
12
neurorehabilitation
8
regenerative medicine
8
neurological regenerative
8
neurological
7
neural
6

Similar Publications

Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology

December 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.

Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.

View Article and Find Full Text PDF

Prioritizing oral bioavailability in drug development strategies.

Future Med Chem

December 2024

Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming, PR China.

View Article and Find Full Text PDF

Background: There is a current fashion for the use of methacrylate-containing nail cosmetics that can induce allergic contact dermatitis. European Union (EU) legislation was introduced in 2021 that had the aim of preventing its development.

Objectives: To assess prevalence and exposures causing contact allergy to 2-hydroxyethyl methacrylate (HEMA) prior to and following implementation of the legislation.

View Article and Find Full Text PDF

Musculoskeletal disorders are a series of diseases involving bone, muscle, cartilage, and tendon, mainly caused by chronic strain, degenerative changes, and structural damage due to trauma. The disorders limit the function of patients due to pain and significantly reduce their quality of life. In recent years, adipose-derived mesenchymal stem cells have been extensively applied in regeneration medicine research due to their particular abilities of self-renewal, differentiation, and targeted homing and are more easily accessed compared with other sources.

View Article and Find Full Text PDF

Biomechanical (over-)stimulation, in addition to inflammatory and fibrotic stimuli, severely impacts the biology, contributing to the overall chronic nature of desmopathy. A major challenge has been the lack of representative two-dimensional (2D) models mimicking inflammatory processes in the presence of dynamic mechanical strain, both being crucial for ligament homeostasis. Physiological levels of strain exert anti-inflammatory effects, while excessive strain can facilitate inflammatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!