Attenuated AKT signaling by miR-146a-5p interferes with chicken granulosa cell proliferation, lipid deposition and progesterone biosynthesis.

Theriogenology

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:

Published: January 2024

Steroid hormones play a crucial role in the growth and maturation of poultry ovarian follicles, with progesterone secretion by granulosa cells (GC) being essential. According to our previous transcriptome analysis, it apparented that miR-146a-5p expressions were upregulated in the follicles undergoing atresia. In this study, we delved the depth to explore the underlying mechanisms by miR-146a-5p in the regulation of follicle functions in chicken. The study demonstrated that miR-146a-5p suppressed cell growth, lipids accumulation, and progesterone biosynthesis in chicken GC. Through targeting association validations, we identified delta 4-desaturase, sphingolipid 1 (DEGS1) as capable of interacting with miR-146a-5p. Co-transfection experiments further confirmed that DEGS1 reversed the impairment of GC functions by miR-146a-5p. Moreover, we discovered that miR-146a-5p suppressed AKT phosphorylation, while DEGS1 enhanced AKT phosphorylation. Phosphatidylinositol-3 kinase (PI3K) inhibitor (LY294002) studies showed that miR-146a-5p would inhibit AKT phosphorylation by governing the DEGS1/AKT pathway, which in turn regulates GC function. In summary, the findings revealed that miR-146a-5p suppressed cell growth, lipid deposition, and progesterone biosynthesis via the DEGS1/AKT pathway. These results may further enrich our understandings of how non-coding RNA regulates productive performance in chickens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2023.11.007DOI Listing

Publication Analysis

Top Keywords

progesterone biosynthesis
12
mir-146a-5p suppressed
12
akt phosphorylation
12
mir-146a-5p
9
lipid deposition
8
deposition progesterone
8
suppressed cell
8
cell growth
8
degs1/akt pathway
8
attenuated akt
4

Similar Publications

Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes.

Gene

January 2025

School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China. Electronic address:

Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism.

View Article and Find Full Text PDF

The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.

View Article and Find Full Text PDF

IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:

For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.

View Article and Find Full Text PDF

Global warming is seriously threatening sheep farmings by increasing health problems and decreasing reproductive efficiency. In this study, pomegranate peels ethanolic extract (Ppee), rich in phenolic acids, was prepared in free (Fppee) and nanoemulsified (Nppee, with 18.49 nm-21.

View Article and Find Full Text PDF

The detection of Estrogen Receptor (ER), Progesterone Receptor (PR), and Human epidermal growth factor receptor 2 (HER-2) is important for the stratification of breast cancer and the selection of therapeutic modalities. This study aimed to determine the quantitative expression of ER, PR and HER-2 using Immunohistochemistry and their correlation with quantitative baseline Ct values measured using Quantitative Polymerase Chain Reaction (PCR). This study also assessed the use of fresh breast tissue biopsies preserved in RNAlater solution in the quantitative detection of these receptors using PCR technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!