Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115747DOI Listing

Publication Analysis

Top Keywords

tar patties
8
hotspots hydrocarbon
8
oligotrophic southeastern
8
southeastern mediterranean
8
mediterranean sea
8
hydrocarbon degradation
8
communities bacteria
8
bacteria archaea
8
archaea eukaryotes
8
hydrocarbon
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!