A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relational Consistency Induced Self-Supervised Hashing for Image Retrieval. | LitMetric

This article proposes a new hashing framework named relational consistency induced self-supervised hashing (RCSH) for large-scale image retrieval. To capture the potential semantic structure of data, RCSH explores the relational consistency between data samples in different spaces, which learns reliable data relationships in the latent feature space and then preserves the learned relationships in the Hamming space. The data relationships are uncovered by learning a set of prototypes that group similar data samples in the latent feature space. By uncovering the semantic structure of the data, meaningful data-to-prototype and data-to-data relationships are jointly constructed. The data-to-prototype relationships are captured by constraining the prototype assignments generated from different augmented views of an image to be the same. Meanwhile, these data-to-prototype relationships are preserved to learn informative compact hash codes by matching them with these reliable prototypes. To accomplish this, a novel dual prototype contrastive loss is proposed to maximize the agreement of prototype assignments in the latent feature space and Hamming space. The data-to-data relationships are captured by enforcing the distribution of pairwise similarities in the latent feature space and Hamming space to be consistent, which makes the learned hash codes preserve meaningful similarity relationships. Extensive experimental results on four widely used image retrieval datasets demonstrate that the proposed method significantly outperforms the state-of-the-art methods. Besides, the proposed method achieves promising performance in out-of-domain retrieval tasks, which shows its good generalization ability. The source code and models are available at https://github.com/IMAG-LuJin/RCSH.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3333294DOI Listing

Publication Analysis

Top Keywords

latent feature
16
feature space
16
relational consistency
12
image retrieval
12
hamming space
12
consistency induced
8
induced self-supervised
8
self-supervised hashing
8
semantic structure
8
structure data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!