Electroencephalography (EEG)-based motor imagery (MI) is one of brain computer interface (BCI) paradigms, which aims to build a direct communication pathway between human brain and external devices by decoding the brain activities. In a traditional way, MI BCI replies on a single brain, which suffers from the limitations, such as low accuracy and weak stability. To alleviate these limitations, multi-brain BCI has emerged based on the integration of multiple individuals' intelligence. Nevertheless, the existing decoding methods mainly use linear averaging or feature integration learning from multi-brain EEG data, and do not effectively utilize coupling relationship features, resulting in undesired decoding accuracy. To overcome these challenges, we proposed an EEG-based multi-brain MI decoding method, which utilizes coupling feature extraction and few-shot learning to capture coupling relationship features among multi-brains with only limited EEG data. We performed an experiment to collect EEG data from multiple persons who engaged in the same task simultaneously and compared the methods on the collected data. The comparison results showed that our proposed method improved the performance by 14.23% compared to the single-brain mode in the 10-shot three-class decoding task. It demonstrated the effectiveness of the proposed method and usability of the method in the context of only small amount of EEG data available.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3336356DOI Listing

Publication Analysis

Top Keywords

eeg data
16
motor imagery
8
coupling feature
8
feature extraction
8
extraction few-shot
8
few-shot learning
8
coupling relationship
8
relationship features
8
proposed method
8
decoding
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!