Background: Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue.

Research Design And Methods: Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

Results: Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy.

Conclusions: Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17425255.2023.2273378DOI Listing

Publication Analysis

Top Keywords

high-throughput rna
8
rna sequencing
8
risk assessment
8
in-depth mechanistic
4
mechanistic analysis
4
analysis including
4
including high-throughput
4
sequencing prediction
4
prediction functional
4
functional structural
4

Similar Publications

SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.

J Exp Clin Cancer Res

January 2025

Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.

Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.

View Article and Find Full Text PDF

Genome-wide association studies are enriched for interacting genes.

BioData Min

January 2025

The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.

Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.

View Article and Find Full Text PDF

Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).

View Article and Find Full Text PDF

Comprehensive genome-scale CRISPR knockout screening of CHO cells.

Sci Data

January 2025

Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.

Chinese hamster ovary (CHO) cells play a pivotal role in the production of recombinant therapeutics. In the present study, we conducted a genome-scale pooled CRISPR knockout (KO) screening using a virus-free, recombinase-mediated cassette exchange-based platform in CHO-K1 host and CHO-K1 derived recombinant cells. Genome-wide guide RNA (gRNA) amplicon sequencing data were generated from cell libraries, as well as short- and long-term KO libraries, and validated through phenotypic assessment and gRNA read count distribution.

View Article and Find Full Text PDF

The respiratory tract is colonized with low-density microbial communities, which have been shown to impact human respiratory health through microbiota-host interactions. However, a lack of fast and cost-effective nucleic acid extraction method for low-microbial biomass samples hinders investigation of respiratory microbiota. Here, we performed a pilot study to assess the suitability of the NAxtra nucleic acid extraction protocol for profiling bacterial microbiota in respiratory samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!