Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thiolactones (TL) can be readily incorporated into polymeric materials and have been extensively used as a ligation strategy despite their limited reactivity toward amine-containing substrates. Comparatively, iminiumthiolactones (ITL) are much more reactive, yet to this day, only the nonsubstituted ITL known as Traut's reagent is commercially available and used. In this work, we advance current TL/ITL chemistry by introducing reactive side groups to the ITL heterocycle in the γ-position, which can be orthogonally modified without affecting the ITL heterocycle itself. To study the reactivity of γ-functional ITLs, we subject one of our derivatives (γ-allyl-functional ITL ) to model reactions with several peptides and a chosen protein (lysozyme C). Using mild reaction conditions, we successfully demonstrate that the γ-functional ITL exhibits orthogonal and enhanced reactivity in a single or double modification while introducing a new functional handle to the biological substrate. We believe that γ-functional ITLs will advance the original Traut chemistry and open promising opportunities for the bioconjugation of biological building blocks to existing functional molecules, polymers, and materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739594 | PMC |
http://dx.doi.org/10.1021/acs.bioconjchem.3c00424 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!