Background: Human papillomavirus (HPV) infection contributes to approximately 5% of the worldwide cancer burden. The three-dose HPV vaccine has demonstrated immunogenicity and efficacy. Humoral responses may be critical for preventing, controlling, and/or eliminating HPV infection. Using data from the HITCH cohort, we analysed humoral immune response to HPV vaccination among women in relation to the phylogenetic relatedness of HPV genotypes.

Methods: We included 96 women aged 18-24 years attending college or university in Montreal, Canada. Participants provided blood samples at enrolment and five follow-up visits. Antibody response to bacterially expressed L1 and E6 glutathione S-transferase fusion proteins of multiple Alphapapillomavirus types, and to virus-like particles (VLP-L1) of HPV16 and HPV18 were measured using multiplex serology. We assessed correlations between antibody seroreactivities using Pearson correlations (r).

Results: At enrolment, 87.7% of participants were unvaccinated, 2.4% had received one, 3.2% two, and 6.7% three doses of HPV vaccine. The corresponding L1 seropositivity to any HPV was 41.2%, 83.3%, 100%, and 97.0%. Between-type correlations for L1 seroreactivities increased with the number of vaccine doses, from one to three. Among the latter, the strongest correlations were observed for HPV58-HPV33 (Pearson correlation [r] = 0.96; α9-species); HPV11-HPV6 ( = 0.96; α10-species); HPV45-HPV18 ( = 0.95; α7-species), and HPV68-HPV59 ( = 0.95; α7-species).

Conclusions: Correlations between HPV-specific antibody seroreactivities are affected by phylogenetic relatedness, with anti-L1 correlations becoming stronger with the number of vaccine doses received.

Download full-text PDF

Source
http://dx.doi.org/10.1080/23744235.2023.2277390DOI Listing

Publication Analysis

Top Keywords

human papillomavirus
8
hitch cohort
8
hpv infection
8
hpv vaccine
8
phylogenetic relatedness
8
antibody seroreactivities
8
number vaccine
8
vaccine doses
8
hpv
7
correlations
6

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

This study examined the relationship between the vaginal microbiome, HPV infection, and cervical intraepithelial neoplasia (CIN) in 173 women. Subjects were grouped by HPV status and cervical lesion severity, ranging from HPV-negative to CIN Grade 2 or higher. Using VALENCIA classification, the study identified different community state types (CSTs) of vaginal microbiota, with CST IV subtypes (Staphylococcus dominated) showing high diversity and increased pathogenic bacteria.

View Article and Find Full Text PDF

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.

View Article and Find Full Text PDF

Incorporating molecular testing for human papillomavirus (HPV) into the screening of cervical specimens can improve risk stratification and, in turn, patient management. Infection with a high-risk (HR) HPV genotype is associated with greater risk for persistent infection, viral integration, and progression of cervical neoplasia. Current guidelines consider HPV 16 or HPV 18 clinically actionable with referral to colposcopy; however, 12 Other HR HPV genotypes have been associated with cervical cancer risk, suggesting a benefit of extended genotyping.

View Article and Find Full Text PDF

Objectives: Human papillomavirus (HPV) is the leading cause of cervical cancer, with adolescent girls and young women (AGYW) in sub-Saharan Africa carrying a disproportionately high burden of infection. Hormonal contraceptives may influence HPV acquisition, persistence, and clearance, but evidence remains inconclusive. This sub-study aimed to evaluate the impact of different hormonal contraceptives on HPV prevalence and genotype distribution in AGYW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!