A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Symbiotic Relationship of Comasterschlegelii (Crinoidea: Comatulidae) and Gymnolophus obscura (Ophiuroidea: Ophiotrichidae) Derived from Stable Isotope and Fatty Acid Analyses. | LitMetric

Coral reef community exhibits high species diversity and a broad range of biological relationships, including widespread symbiosis and complex food utilization patterns. In our study, we investigated the symbiotic relationship between the commonly crinoid host Comaster schlegelii and its ophiuroid obligatory symbiont Gymnolophus obscura. Using a combination of fatty acid biomarkers and stable isotopic compositions, we explored differences in their organic matter utilization strategies and nutritional relationships. The result of stable isotopes revealed that G. obscura had higher δ15N values than its crinoid host. Particulate organic matter and phytoplankton were identified as the primary food sources for both species, however C. schlegelii showed a higher proportional contribution from benthic microalgae. Fatty acid markers showed that C. schlegelii was more dependent on benthic microalgae such as diatoms, and less on debritic organic matter and bacteria than G. obscura. Elevated δ15N values of G. obscura and similar food source contribution rates between the host and symbiont suggest that ophiuroid feeds on materials filtered by crinoids and have similar diet to the host. Our results provide insights into the symbiotic patterns of crinoids and ophiuroids, while also supplying foundational data on how symbiotic reef species select organic matter utilization strategies to adapt to their environment.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icad128DOI Listing

Publication Analysis

Top Keywords

organic matter
16
fatty acid
12
symbiotic relationship
8
gymnolophus obscura
8
crinoid host
8
matter utilization
8
utilization strategies
8
δ15n values
8
benthic microalgae
8
obscura
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!