A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enlighting Electron Routes In Oxyfunctionalizing Synechocystis sp. PCC 6803. | LitMetric

Enlighting Electron Routes In Oxyfunctionalizing Synechocystis sp. PCC 6803.

Chembiochem

Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.

Published: January 2024

Phototrophic microorganisms, like cyanobacteria, are gaining attention as host organisms for biocatalytic processes with light as energy source and water as electron source. Redox enzymes, especially oxygenases, can profit from in-situ supply of co-substrates, i. e., reduction equivalents and O , by the photosynthetic light reaction. The electron transfer downstream of PS I to heterologous electron consuming enzymes in principle can involve NADPH, NADH, and/or ferredoxin, whereas most direct and efficient transfer is desirable. Here, we use the model organism Synechocystis sp. PCC 6803 to investigate, to what extent host and/or heterologous constituents are involved in electron transfer to a heterologous cytochrome P450 monooxygenase from Acidovorax sp. CHX100. Interestingly, in this highly active light-fueled cycloalkane hydroxylating biocatalyst, host-intrinsic enzymes were found capable of completely substituting the function of the Acidovorax ferredoxin reductase. To a certain extent (20 %), this also was true for the Acidovorax ferredoxin. These results indicate the presence of a versatile set of electron carriers in cyanobacteria, enabling efficient and direct coupling of electron consuming reactions to photosynthetic water oxidation. This will both simplify and promote the use of phototrophic microorganisms for sustainable production processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202300475DOI Listing

Publication Analysis

Top Keywords

synechocystis pcc
8
pcc 6803
8
phototrophic microorganisms
8
electron transfer
8
electron consuming
8
acidovorax ferredoxin
8
electron
6
enlighting electron
4
electron routes
4
routes oxyfunctionalizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!