Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session7fj0b2vibkdl08gmmmn3g84s93glqisi): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: strpos(): Passing null to parameter #1 ($haystack) of type string is deprecated
Filename: models/Detail_model.php
Line Number: 71
Backtrace:
File: /var/www/html/application/models/Detail_model.php
Line: 71
Function: strpos
File: /var/www/html/application/controllers/Detail.php
Line: 252
Function: insertAPISummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated
Filename: helpers/my_audit_helper.php
Line Number: 8919
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8919
Function: str_replace
File: /var/www/html/application/controllers/Detail.php
Line: 255
Function: formatAIDetailSummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Pathologic complete response after neoadjuvant therapy is an important prognostic indicator for locally advanced rectal cancer and may give insights into which patients might be treated nonoperatively in the future. Existing models for predicting pathologic complete response in the pretreatment setting are limited by small data sets and low accuracy.
Objective: We sought to use machine learning to develop a more generalizable predictive model for pathologic complete response for locally advanced rectal cancer.
Design: Patients with locally advanced rectal cancer who underwent neoadjuvant therapy followed by surgical resection were identified in the National Cancer Database from years 2010 to 2019 and were split into training, validation, and test sets. Machine learning techniques included random forest, gradient boosting, and artificial neural network. A logistic regression model was also created. Model performance was assessed using an area under the receiver operating characteristic curve.
Settings: This study used a national, multicenter data set.
Patients: Patients with locally advanced rectal cancer who underwent neoadjuvant therapy and proctectomy.
Main Outcome Measures: Pathologic complete response defined as T0/xN0/x.
Results: The data set included 53,684 patients. Pathologic complete response was experienced by 22.9% of patients. Gradient boosting showed the best performance with an area under the receiver operating characteristic curve of 0.777 (95% CI, 0.773-0.781), compared with 0.684 (95% CI, 0.68-0.688) for logistic regression. The strongest predictors of pathologic complete response were no lymphovascular invasion, no perineural invasion, lower CEA, smaller size of tumor, and microsatellite stability. A concise model including the top 5 variables showed preserved performance.
Limitations: The models were not externally validated.
Conclusions: Machine learning techniques can be used to accurately predict pathologic complete response for locally advanced rectal cancer in the pretreatment setting. After fine-tuning a data set including patients treated nonoperatively, these models could help clinicians identify the appropriate candidates for a watch-and-wait strategy. See Video Abstract .
El Cncer De Recto Basada En Factores Previos Al Tratamiento Mediante El Aprendizaje Automtico: ANTECEDENTES:La respuesta patológica completa después de la terapia neoadyuvante es un indicador pronóstico importante para el cáncer de recto localmente avanzado y puede dar información sobre qué pacientes podrían ser tratados de forma no quirúrgica en el futuro. Los modelos existentes para predecir la respuesta patológica completa en el entorno previo al tratamiento están limitados por conjuntos de datos pequeños y baja precisión.OBJETIVO:Intentamos utilizar el aprendizaje automático para desarrollar un modelo predictivo más generalizable para la respuesta patológica completa para el cáncer de recto localmente avanzado.DISEÑO:Los pacientes con cáncer de recto localmente avanzado que se sometieron a terapia neoadyuvante seguida de resección quirúrgica se identificaron en la Base de Datos Nacional del Cáncer de los años 2010 a 2019 y se dividieron en conjuntos de capacitación, validación y prueba. Las técnicas de aprendizaje automático incluyeron bosque aleatorio, aumento de gradiente y red neuronal artificial. También se creó un modelo de regresión logística. El rendimiento del modelo se evaluó utilizando el área bajo la curva característica operativa del receptor.ÁMBITO:Este estudio utilizó un conjunto de datos nacional multicéntrico.PACIENTES:Pacientes con cáncer de recto localmente avanzado sometidos a terapia neoadyuvante y proctectomía.PRINCIPALES MEDIDAS DE VALORACIÓN:Respuesta patológica completa definida como T0/xN0/x.RESULTADOS:El conjunto de datos incluyó 53.684 pacientes. El 22,9% de los pacientes experimentaron una respuesta patológica completa. El refuerzo de gradiente mostró el mejor rendimiento con un área bajo la curva característica operativa del receptor de 0,777 (IC del 95%: 0,773 - 0,781), en comparación con 0,684 (IC del 95%: 0,68 - 0,688) para la regresión logística. Los predictores más fuertes de respuesta patológica completa fueron la ausencia de invasión linfovascular, la ausencia de invasión perineural, un CEA más bajo, un tamaño más pequeño del tumor y la estabilidad de los microsatélites. Un modelo conciso que incluye las cinco variables principales mostró un rendimiento preservado.LIMITACIONES:Los modelos no fueron validados externamente.CONCLUSIONES:Las técnicas de aprendizaje automático se pueden utilizar para predecir con precisión la respuesta patológica completa para el cáncer de recto localmente avanzado en el entorno previo al tratamiento. Después de realizar ajustes en un conjunto de datos que incluye pacientes tratados de forma no quirúrgica, estos modelos podrían ayudar a los médicos a identificar a los candidatos adecuados para una estrategia de observar y esperar. (Traducción-Dr. Ingrid Melo ).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186794 | PMC |
http://dx.doi.org/10.1097/DCR.0000000000003038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!