Triple-negative breast cancer (TNBC) doesn't have well-defined molecular targets making it unable to treat with chemotherapy also have faster metastatic rate and worse survival rate. In the current study we aim to target TNBC through eco-friendly green synthesized silver nanoparticles having anti-cancer phytoconstituents from the traditional anti-cancer medicinal plant Eclipta alba. Green synthesized silver nanoparticles (AgNPs) are agglomerates of spherical shaped 40-60 nm sized showing characteristic light absorption at 437 nm, banding pattern at 1479, 1285, 1036, and 471 showing and further X-ray diffraction pattern confirm face-centered cubic crystal silver structure exist in the green synthesized silver nanoparticle preparation. Further in vitro anti-oxidant analysis results revealed that green synthesized AgNPs showed 2.6-fold higher anti-oxidant potential (IC50 15.70 g/ml) than that of aqueous plant leaf extract (IC50 39.80 g/ml). In MTT cytotoxicity analysis Eclipta alba plant extract and AgNPs both display dose-dependent cytotoxicity against triple-negative breast cancer cells (MDA-MB-231), although their IC values differ substantially, at 105.80 µg/ml and 77.20 g/ml, respectively. Finally, AgNPs from Eclipta alba tested for anti-leishmanial activity and it showed 91.36 ± 1.05 for promastigotes and 76.62 ± 0.95 for amastigotes at the highest dose of 400 g/ml. Altogether present data showed that Eclipta alba leaf extract actively bonded with silver nanoparticles suppresses the MDA-MB-231 cells growth through high antioxidant characters and anti-leishmanial activity. From together we confirm that Eclipta alba was recommended to a future therapeutic drug and agent to control breast cancer in the clinical level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-023-00959-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!