A novel chaotic and neighborhood search-based artificial bee colony algorithm for solving optimization problems.

Sci Rep

National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum (East China), Qingdao, 266580, China.

Published: November 2023

With the development of artificial intelligence, numerous researchers are attracted to study new heuristic algorithms and improve traditional algorithms. Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the foraging behavior of honeybees, which is one of the most widely applied methods to solve optimization problems. However, the traditional ABC has some shortcomings such as under-exploitation and slow convergence, etc. In this study, a novel variant of ABC named chaotic and neighborhood search-based ABC algorithm (CNSABC) is proposed. The CNSABC contains three improved mechanisms, including Bernoulli chaotic mapping with mutual exclusion mechanism, neighborhood search mechanism with compression factor, and sustained bees. In detail, Bernoulli chaotic mapping with mutual exclusion mechanism is introduced to enhance the diversity and the exploration ability. To enhance the convergence efficiency and exploitation capability of the algorithm, the neighborhood search mechanism with compression factor and sustained bees are presented. Subsequently, a series of experiments are conducted to verify the effectiveness of the three presented mechanisms and the superiority of the proposed CNSABC, the results demonstrate that the proposed CNSABC has better convergence efficiency and search ability. Finally, the CNSABC is applied to solve two engineering optimization problems, experimental results show that CNSABC can produce satisfactory solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665360PMC
http://dx.doi.org/10.1038/s41598-023-44770-8DOI Listing

Publication Analysis

Top Keywords

optimization problems
12
proposed cnsabc
12
chaotic neighborhood
8
neighborhood search-based
8
artificial bee
8
bee colony
8
abc algorithm
8
bernoulli chaotic
8
chaotic mapping
8
mapping mutual
8

Similar Publications

Adaptive Fixed-time tracking control for large-scale nonlinear systems based on improved simplified optimized backstepping strategy.

ISA Trans

January 2025

College of Control Science and Engineering, Bohai University, Jinzhou 121013, Liaoning, China. Electronic address:

This paper investigates the optimal fixed-time tracking control problem for a class of nonstrict-feedback large-scale nonlinear systems with prescribed performance. In the process of optimal control design, the new critic and actor neural network updating laws are proposed by adopting the fixed-time technique and the simplified reinforcement learning algorithm, which both guarantee the simplified optimal control algorithm and accelerate the convergence rate. Furthermore, the prescribed performance method is contemplated simultaneously, which ensures tracking errors can converge within the prescribed performance bounds in fixed time.

View Article and Find Full Text PDF

Metal-based mesoporous polydopamine with dual enzyme-like activity as biomimetic nanodrug for alleviating liver fibrosis.

J Colloid Interface Sci

January 2025

Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China. Electronic address:

Liver fibrosis is a common pathological stage in the development of several chronic liver diseases, and early intervention can effectively reverse the developing process. Excessive reactive oxygen species (ROS) can promote the activation of hepatic stellate cells (HSCs), but existing treatments have not addressed this problem. In this study, different metal-based mesoporous polydopamine (MPDA) was prepared by the soft template method, and their free radical scavenging abilities, as well as the efficacy and safety of the carriers were investigated, so as to select Cu-coordinated MPDA (CMP) as the optimal nanocarrier.

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

As the operative management of acute, chest wall, skeletal injury escalates throughout the world, it has become commonplace for patients with posttraumatic conditions to present with clinical reconstructive challenges as well. In addition, it is becoming clear that rib nonunions are not rare, likely more than 5% of rib fractures. No subspecialty is better equipped to address such painful conditions than orthopaedic surgery.

View Article and Find Full Text PDF

Optimal control of agent-based models via surrogate modeling.

PLoS Comput Biol

January 2025

Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America.

This paper describes and validates an algorithm to solve optimal control problems for agent-based models (ABMs). For a given ABM and a given optimal control problem, the algorithm derives a surrogate model, typically lower-dimensional, in the form of a system of ordinary differential equations (ODEs), solves the control problem for the surrogate model, and then transfers it back to the original ABM. It applies to quite general ABMs and offers several options for the ODE structure, depending on what information about the ABM is to be used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!