https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37993462&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 379934622023112720231127
2041-17231412023Nov22Nature communicationsNat CommunCommon transthyretin-derived amyloid fibril structures in patients with hereditary ATTR amyloidosis.76237623762310.1038/s41467-023-43301-3Systemic ATTR amyloidosis is an increasingly important protein misfolding disease that is provoked by the formation of amyloid fibrils from transthyretin protein. The pathological and clinical disease manifestations and the number of pathogenic mutational changes in transthyretin are highly diverse, raising the question whether the different mutations may lead to different fibril morphologies. Using cryo-electron microscopy, however, we show here that the fibril structure is remarkably similar in patients that are affected by different mutations. Our data suggest that the circumstances under which these fibrils are formed and deposited inside the body - and not only the fibril morphology - are crucial for defining the phenotypic variability in many patients.© 2023. The Author(s).SteinebreiMaximilianM0000-0002-0582-3909Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany. maximilian.steinebrei@uni-ulm.de.BaurJulianJInstitute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany.PradhanAnavigghaAInstitute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany.KupferNiklasNInstitute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany.WieseSebastianS0000-0001-5697-2608Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, D-89081, Germany.HegenbartUteU0000-0003-1917-6746Medical Department V, Amyloidosis Center, Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, D-69120, Germany.SchönlandStefan OSO0000-0002-4853-5579Medical Department V, Amyloidosis Center, Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, D-69120, Germany.SchmidtMatthiasM0000-0002-9442-460XInstitute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany.FändrichMarcusM0000-0003-2123-6816Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, Ulm, D-89081, Germany.engJournal Article20231122
EnglandNat Commun1015285552041-17230Amyloid0Prealbumin0TTR protein, humanIMHumansAmyloidmetabolismAmyloid Neuropathies, FamilialmetabolismCryoelectron MicroscopyPrealbuminmetabolismProteostasis DeficienciesThe authors declare no competing interest.
20236292023113202311246432023112304220231122231920231122epublish37993462PMC1066534610.1038/s41467-023-43301-310.1038/s41467-023-43301-3Ke PC, et al. Half a century of amyloids: past, present and future. Chem. Soc. Rev. 2020;49:5473–5509. doi: 10.1039/C9CS00199A.10.1039/C9CS00199APMC744574732632432Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 2018;19:755–773. doi: 10.1038/s41580-018-0060-8.10.1038/s41580-018-0060-830237470Falcon B, et al. Conformation determines the seeding potencies of native and recombinant tau aggregates. J. Biol. Chem. 2015;290:1049–1065. doi: 10.1074/jbc.M114.589309.10.1074/jbc.M114.589309PMC429447325406315Peelaerts W, et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 2015;522:340–344. doi: 10.1038/nature14547.10.1038/nature1454726061766Yang Y, et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science. 2022;375:167–172. doi: 10.1126/science.abm7285.10.1126/science.abm7285PMC761223435025654Kollmer M, et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 2019;10:4760. doi: 10.1038/s41467-019-12683-8.10.1038/s41467-019-12683-8PMC682080031664019Banerjee S, et al. Amyloid fibril structure from the vascular variant of systemic AA amyloidosis. Nat. Commun. 2022;13:7261. doi: 10.1038/s41467-022-34636-4.10.1038/s41467-022-34636-4PMC970086436433936Liberta F, et al. Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids. Nat. Commun. 2019;10:1104. doi: 10.1038/s41467-019-09033-z.10.1038/s41467-019-09033-zPMC640576630846696Bartz JC. Prion strain diversity. Cold Spring Harb. Perspect. Med. 2016;6:a024349. doi: 10.1101/cshperspect.a024349.10.1101/cshperspect.a024349PMC513175527908925Cornwell GG, Sletten K, Johansson B, Westermark P. Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem. Biophys. Res. Commun. 1988;154:648–653. doi: 10.1016/0006-291X(88)90188-X.10.1016/0006-291X(88)90188-X3135807Blake CCF, Geisow MJ, Oatley SJ, Rérat B, Rérat C. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. J. Mol. Biol. 1978;121:339–356. doi: 10.1016/0022-2836(78)90368-6.10.1016/0022-2836(78)90368-6671542Ando Y, et al. Guidelines and new directions in the therapy and monitoring of ATTRv amyloidosis. Amyloid. 2022;29:143–155. doi: 10.1080/13506129.2022.2052838.10.1080/13506129.2022.205283835652823Kelly, J. et al. Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid. Adv. Protein Chem.50, 161–181 (1997).9338081Koike H, Katsuno M. Transthyretin amyloidosis: update on the clinical spectrum, pathogenesis, and disease-modifying therapies. Neurol. Ther. 2020;9:317–333. doi: 10.1007/s40120-020-00210-7.10.1007/s40120-020-00210-7PMC750025132948978Koike H, et al. Distinct characteristics of amyloid deposits in early- and late-onset transthyretin Val30Met familial amyloid polyneuropathy. J. Neurol. Sci. 2009;287:178–184. doi: 10.1016/j.jns.2009.07.028.10.1016/j.jns.2009.07.02819709674Ihse E, et al. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. J. Pathol. 2008;216:253–261. doi: 10.1002/path.2411.10.1002/path.241118729067Saraiva MJM. Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum. Mutat. 2001;17:493–503. doi: 10.1002/humu.1132.10.1002/humu.113211385707Rowczenio DM, et al. Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum. Mutat. 2014;35:E2403–E2412. doi: 10.1002/humu.22619.10.1002/humu.2261925044787Jenne DE, et al. A new isoleucine substitution of Val-20 in transthyretin tetramers selectively impairs dimer-dimer contacts and causes systemic amyloidosis. Proc. Natl Acad. Sci. 1996;93:6302–6307. doi: 10.1073/pnas.93.13.6302.10.1073/pnas.93.13.6302PMC390178692810Jiang X, Buxbaum JN, Kelly JW. The V122I cardiomyopathy variant of transthyretin increases the velocity of rate-limiting tetramer dissociation, resulting in accelerated amyloidosis. Proc. Natl Acad. Sci. 2001;98:14943–14948. doi: 10.1073/pnas.261419998.10.1073/pnas.261419998PMC6496311752443Annamalai K, et al. Polymorphism of amyloid fibrils in vivo. Angew. Chem. Int. Ed. 2016;55:4822–4825. doi: 10.1002/anie.201511524.10.1002/anie.201511524PMC486449626954430Schmidt M, et al. Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat. Commun. 2019;10:5008. doi: 10.1038/s41467-019-13038-z.10.1038/s41467-019-13038-zPMC682517131676763Steinebrei M, et al. Cryo-EM structure of an ATTRwt amyloid fibril from systemic non-hereditary transthyretin amyloidosis. Nat. Commun. 2022;13:6398. doi: 10.1038/s41467-022-33591-4.10.1038/s41467-022-33591-4PMC961390336302762Bergström J, et al. Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology. J. Pathol. 2005;206:224–232. doi: 10.1002/path.1759.10.1002/path.175915810051Pettersen EF, et al. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084.10.1002/jcc.2008415264254Radamaker L, et al. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat. Commun. 2021;12:875. doi: 10.1038/s41467-021-21126-2.10.1038/s41467-021-21126-2PMC787085733558536Mazzini G, et al. Protease‐sensitive regions in amyloid light chains: what a common pattern of fragmentation across organs suggests about aggregation. FEBS J. 2022;289:494–506. doi: 10.1111/febs.16182.10.1111/febs.16182PMC929295034482629Liberta F, et al. Morphological and primary structural consistency of fibrils from different AA patients (common variant) Amyloid. 2019;26:164–170. doi: 10.1080/13506129.2019.1628015.10.1080/13506129.2019.162801531240945Nguyen, B. A. et al. Structural polymorphism of amyloid fibrils in cardiac transthyretin amyloidosis revealed by cryo-electron microscopy. Preprint at 10.1101/2022.06.21.496949 (2022).Iakovleva I, et al. Structural basis for transthyretin amyloid formation in vitreous body of the eye. Nat. Commun. 2021;12:7141. doi: 10.1038/s41467-021-27481-4.10.1038/s41467-021-27481-4PMC865499934880242Hartmann J, Zacharias M. Analysis of amyloidogenic transthyretin mutations using continuum solvent free energy calculations. Proteins Struct. Funct. Bioinforma. 2022;90:2080–2090. doi: 10.1002/prot.26399.10.1002/prot.2639935841533Ihse E, et al. Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis. Amyloid. 2013;20:142–150. doi: 10.3109/13506129.2013.797890.10.3109/13506129.2013.79789023713495Colon W, Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992;31:8654–8660. doi: 10.1021/bi00151a036.10.1021/bi00151a0361390650Faria TQ, et al. A look into amyloid formation by transthyretin: aggregation pathway and a novel kinetic model. Phys. Chem. Chem. Phys. 2015;17:7255–7263. doi: 10.1039/C4CP04549A.10.1039/C4CP04549A25694367Mangione PP, et al. Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proc. Natl Acad. Sci. 2014;111:1539–1544. doi: 10.1073/pnas.1317488111.10.1073/pnas.1317488111PMC391061124474780Mangione PP, et al. Plasminogen activation triggers transthyretin amyloidogenesis in vitro. J. Biol. Chem. 2018;293:14192–14199. doi: 10.1074/jbc.RA118.003990.10.1074/jbc.RA118.003990PMC613954830018138Saelices, L. et al. Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition. Proc. Natl. Acad. Sci. 115, E6741–E6750 (2018).PMC605517229954863Acquasaliente L, De Filippis V. The role of proteolysis in amyloidosis. Int. J. Mol. Sci. 2022;24:699. doi: 10.3390/ijms24010699.10.3390/ijms24010699PMC982069136614141Schönfelder J, et al. Protease resistance of ex vivo amyloid fibrils implies the proteolytic selection of disease-associated fibril morphologies. Amyloid. 2021;28:243–251. doi: 10.1080/13506129.2021.1960501.10.1080/13506129.2021.196050134338090Buxbaum JN, et al. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2022;29:213–219. doi: 10.1080/13506129.2022.2147636.10.1080/13506129.2022.214763636420821Wu Z, et al. MASH explorer: a universal software environment for top-down proteomics. J. Proteome Res. 2020;19:3867–3876. doi: 10.1021/acs.jproteome.0c00469.10.1021/acs.jproteome.0c00469PMC772871332786689Niedermeyer THJ, Strohalm M. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS One. 2012;7:e44913. doi: 10.1371/journal.pone.0044913.10.1371/journal.pone.0044913PMC344148623028676Sokolov PA, Belousov MV, Bondarev SA, Zhouravleva GA, Kasyanenko NA. FibrilJ: ImageJ plugin for fibrils’ diameter and persistence length determination. Comput. Phys. Commun. 2017;214:199–206. doi: 10.1016/j.cpc.2017.01.011.10.1016/j.cpc.2017.01.011Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013.10.1006/jsbi.1996.00138742726Scheres SHW. Amyloid structure determination in RELION −3.1. Acta Crystallogr. Sect. Struct. Biol. 2020;76:94–101. doi: 10.1107/S2059798319016577.10.1107/S2059798319016577PMC700851132038040Zheng SQ, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193.10.1038/nmeth.4193PMC549403828250466Rohou A, Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015;192:216–221. doi: 10.1016/j.jsb.2015.08.008.10.1016/j.jsb.2015.08.008PMC676066226278980He S, Scheres SHW. Helical reconstruction in RELION. J. Struct. Biol. 2017;198:163–176. doi: 10.1016/j.jsb.2017.02.003.10.1016/j.jsb.2017.02.003PMC547944528193500Zivanov J, et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife. 2018;7:e42166. doi: 10.7554/eLife.42166.10.7554/eLife.42166PMC625042530412051Zivanov J, Nakane T, Scheres SHW. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION −3.1. IUCrJ. 2020;7:253–267. doi: 10.1107/S2052252520000081.10.1107/S2052252520000081PMC705537332148853Zivanov J, Nakane T, Scheres SHW. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ. 2019;6:5–17. doi: 10.1107/S205225251801463X.10.1107/S205225251801463XPMC632717930713699Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158.10.1107/S090744490401915815572765Williams CJ, et al. MolProbity: More and better reference data for improved all-atom structure validation: PROTEIN SCIENCE.ORG. Protein Sci. 2018;27:293–315. doi: 10.1002/pro.3330.10.1002/pro.3330PMC573439429067766Liebschner D, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. Struct. Biol. 2019;75:861–877. doi: 10.1107/S2059798319011471.10.1107/S2059798319011471PMC677885231588918Wriggers W. Conventions and workflows for using Situs. Acta Crystallogr. D. Biol. Crystallogr. 2012;68:344–351. doi: 10.1107/S0907444911049791.10.1107/S0907444911049791PMC332259422505255