Achieving rapid endogenous partial denitrification by regulating competition and cooperation between glycogen accumulating organisms and phosphorus accumulating organisms from conventional activated sludge.

Bioresour Technol

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address:

Published: February 2024

In anaerobic/aerobic/anoxic (A/O/A) process, endogenous denitrification (ED) is critically important, and achieving steady endogenous partial denitrification (EdPD) is crucial to carbon saving and anammox application. In this study, EdPD was rapidly realized from conventional activated sludge by expelling phosphorus accumulating organisms (PAOs) in anaerobic/anoxic (A/A) mode during 40 days, with nitrite transformation rate (NTR) surging to 82.8 % from 29.4 %. Competibacter was the prime EdPD-fulfilling bacterium, soaring to 28.9 % from 0.5 % in phase II. Afterwards, balance of high NTR and phosphorus removal efficiency (PRE) were attained by well regulating competition and cooperation between PAOs and glycogen accumulating organisms (GAOs) in A/O/A mode, when the Competibacter (21.7 %) and Accumulibacter (7.3 %, mainly Acc_IIC and Acc_IIF) were in dominant position with balance. The PRE recovered to 88.6 % and NTR remained 67.7 %. Great balance of GAOs and PAOs contributed to advanced nitrogen removal by anammox.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.130031DOI Listing

Publication Analysis

Top Keywords

accumulating organisms
16
endogenous partial
8
partial denitrification
8
regulating competition
8
competition cooperation
8
glycogen accumulating
8
phosphorus accumulating
8
conventional activated
8
activated sludge
8
achieving rapid
4

Similar Publications

Background: Despite increasing knowledge of the etiology of neurodegenerative diseases, translation of these benefits into therapeutic advances for Alzheimer's Disease and related diseases (ADRD) has been slow. Drug repurposing is a promising strategy for identifying new uses for approved drugs beyond their initial indications. We developed a high-throughput drug screening platform aimed at identifying drugs capable of reducing proteotoxicity in vivo (Aß toxicity in Caenorhabditis elegans) AND inhibiting microglial inflammation (TNF-alpha IL-6), both implicated in driving AD(figure attached with sample of results in C.

View Article and Find Full Text PDF

The outbreak of COVID-19 has opened up new avenues for exploring the importance of vitamin D in immunity, in addition to its role in calcium absorption. Recently, vitamin D supplementation has been found to enhance T regulatory lymphocytes, which are reduced in individuals with COVID-19. Increased risk of pneumonia and increases in inflammatory cytokines have been reported to be major threats associated with vitamin-D deficiency.

View Article and Find Full Text PDF

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

The gut-brain axis underlying hepatic encephalopathy in liver cirrhosis.

Nat Med

January 2025

Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Up to 50-70% of patients with liver cirrhosis develop hepatic encephalopathy (HE), which is closely related to gut microbiota dysbiosis, with an unclear mechanism. Here, by constructing gut-brain modules to assess bacterial neurotoxins from metagenomic datasets, we found that phenylalanine decarboxylase (PDC) genes, mainly from Ruminococcus gnavus, increased approximately tenfold in patients with cirrhosis and higher in patients with HE. Cirrhotic, not healthy, mice colonized with R.

View Article and Find Full Text PDF

A Small-Molecule Inhibitor of Gut Bacterial Urease Protects the Host from Liver Injury.

ACS Chem Biol

January 2025

Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts 02138, United States.

Hyperammonemia is characterized by the accumulation of ammonia within the bloodstream upon liver injury. Left untreated, hyperammonemia contributes to conditions such as hepatic encephalopathy that have high rates of patient morbidity and mortality. Previous studies have identified gut bacterial urease, an enzyme that converts urea into ammonia, as a major contributor to systemic ammonia levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!