Phytosiderophore pathway response in barley exposed to iron, zinc or copper starvation.

Plant Sci

University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad-Lorenz Strasse 24, Tulln an der Donau 3430, Austria. Electronic address:

Published: February 2024

Efficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation. Two barley (Hordeum vulgare L.) lines with contrasting micronutrient grain yields were grown hydroponically and PS exudation (LC-MS) and root gene expression (RNAseq) were determined after either Fe, Zn, or Cu starvation. The response strength of the PS pathway was micronutrient dependent and decreased in the order Fe > Zn > Cu deficiency. We observed a stronger expression of PS pathway genes and greater PS exudation in the barley line with large micronutrient grain yield suggesting that a highly expressed PS pathway might be an important trait involved in high micronutrient accumulation. In addition to several metal specific transporters, we also found that the expression of IRO2 and bHLH156 transcription factors was not only induced under Fe but also under Zn and Cu deficiency. Our study delivers important insights into the role of the PS pathway in the acquisition of different micronutrients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2023.111919DOI Listing

Publication Analysis

Top Keywords

efficient micronutrient
8
micronutrient acquisition
8
micronutrient grain
8
micronutrient
7
phytosiderophore pathway
4
pathway response
4
response barley
4
barley exposed
4
exposed iron
4
iron zinc
4

Similar Publications

Introduction: This study aims to determine if intraoral 850 nm LED irradiation could reduce the duration of lower anterior crowding alignment.

Methods: In a parallel-designed, randomized controlled clinical trial 60 patients with 2 to 6 mm of lower incisor crowding who need non-extraction treatment, were randomly assigned to the intervention and control groups by block randomization (36 females, 24 males, mean age: 19.93 ± 3.

View Article and Find Full Text PDF

The dried matrix spot (DMS) method, initially developed for neonatal blood screening, has gained prevalence in various research fields for its efficiency in handling small sample volumes and its adaptability to diverse analytical techniques. This study presents the results of the first systematic investigation of direct multi-element analysis in DMS of human blood and plasma samples with Particle Induced X-ray Emission (PIXE). Internal standard addition was used to address the issue of DMS heterogeneity and to eliminate the need for determining the sample volume equivalent, allowing a single-spot (single-punch) measurement.

View Article and Find Full Text PDF

Environmental Control of Queuosine Levels in Streptococcus mutans tRNAs.

Mol Microbiol

December 2024

Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA.

Queuosine (Q) is a modification of the wobble base in tRNAs that decode NA(C/U) codons. It is ubiquitous in bacteria, including many pathogens. Streptococcus mutans is an early colonizer of dental plaque biofilm and a key player in dental caries.

View Article and Find Full Text PDF

Folic Acid-Decorated Chitosan-PLGA Nanobiopolymers for Targeted Drug Delivery to Acute Lymphoblastic Leukemia Cells: Studies.

Technol Cancer Res Treat

December 2024

Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

Objectives: This study developed a drug delivery system (DDS) using folic acid (FA)-functionalized chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanocarriers for targeted sodium butyrate (NB) delivery to leukemia cells (NALM6). The goal was to enhance NB's therapeutic efficacy while reducing its cytotoxicity to non-malignant cells.

Methods: FA-CS-PLGA nanocarriers were synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Ecofriendly Synthesis of Nickel Oxide Nanoparticles From Fissidens Species and Its Biological Applications.

Luminescence

December 2024

Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

The present study was performed to synthesize eco-friendly nickel oxide nanoparticles (NiONPs) from the aqueous extract of Fissidens species (FS) and explore its biological activities. Phytochemicals, namely, alkaloids, flavonoids, sterols, tannins, proteins, carbohydrates and phenols, were present in the aqueous extract of Fissidens sp. The UV-Vis and FT-IR analyses of FS-NiONPs revealed a prominent peak at 392 nm, along with functional groups that facilitate the formation of FS-NiONPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!