The ultimate goal of world crop production is to produce more with less to meet the growing population demands. However, concentrating solely on increased quantity of production often impacts the quality of produce. Consumption of crops or foods that do not meet nutritional or dietary needs can lead to malnutrition. Malnutrition and undernutrition are prevalent in a significant portion of the population. Agronomic biofortification of minerals and vitamins in horticultural crops has emerged as a promising approach to address nutrient deficiencies and enhance the nutritional quality of food. Despite numerous research papers on plant nutrient biofortification, there remains a lack of systematic reviews that comprehensively summarize the latest knowledge on this topic. Herein we discuss different agronomic ways to biofortify several horticultural crops over the past decade. This systematic review aims to fill this gap by presenting various methodologies and comparing the outcomes of these methods in respect to nutrient content in plant parts. The review focuses on original research papers collected from various scientific databases including Scopus and Web of Knowledge, covering the most recent literature from the last ten years (2012-2022) for specific studies on the agronomic biofortification macronutrients, micronutrients, and vitamins in horticultural plants with exclusion of certain criteria such as 'genetic,' 'breeding,' and 'agronomic crops.' This review critically analyzes the current state of research and explores prospects for the future in this field. The biofortification of various minerals and vitamins, including calcium, selenium, iodine, B vitamins, vitamin A, and vitamin C, are examined, highlighting the achievements and limitations of existing studies. In conclusion, agronomic biofortification of minerals and vitamins in horticultural crops with further research offers a promising approach to address nutrient deficiencies and improve the nutritional quality of food.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168665 | DOI Listing |
Int J Biol Macromol
January 2025
College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Sucrose is an important factor affecting plant growth and fruit quality, but the molecular regulatory mechanism of sucrose biosynthesis in longan is not yet understood. Here, we characterized a transcription factor, DlbHLH68, positively regulates sucrose accumulation in longan. Subcellular localization and transcriptional activity analysis indicated that DlbHLH68 is a nuclear transcriptional activator.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China. Electronic address:
Seed development is one of the most important agricultural traits, determining both the crop yield and quality of fleshy fruits. A typically abortive litchi cultivar, Guiwei, exhibits heterogeneity in seed size across production areas, years, and individual trees. Previous studies have shown that 'Guiwei' seed development failure is associated with endosperm arrest and chilling conditions.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA.
Sorghum is emerging as an ideal genetic model for designing high-biomass bioenergy crops. Biomass yield, a complex trait influenced by various plant architectural characteristics, is typically regulated by numerous genes. This study aimed to dissect the genetic regulators underlying fourteen plant architectural traits and ten biomass yield traits in the Sorghum Association Panel across two growing seasons.
View Article and Find Full Text PDFPlant Physiol
January 2025
College of Horticulture, China Agricultural University, Beijing, 100193, China.
Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor in the tolerance to iron stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!