Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA. Gabija protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage defence complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the complex and create a 4:4 GajA-GajB assembly (hereafter, GajAB) that is essential for phage resistance in vivo. We show that a phage-encoded protein, Gabija anti-defence 1 (Gad1), directly binds to the Gabija GajAB complex and inactivates defence. A cryo-EM structure of the virally inhibited state shows that Gad1 forms an octameric web that encases the GajAB complex and inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly of the Gabija anti-phage defence complex and define a unique mechanism of viral immune evasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781630 | PMC |
http://dx.doi.org/10.1038/s41586-023-06855-2 | DOI Listing |
Cyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse and phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.
View Article and Find Full Text PDFViruses
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prosp. Lavrentieva 8, Novosibirsk 630090, Russia.
Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in helps in better adapting the phages to the systems present in the pathogenic bacteria.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
As natural parasites of bacteria, phages have greatly contributed to bacterial evolution owing to their persistent threat. Diverse phage resistance systems have been developed in bacteria during the coevolutionary process with phages. Conversely, phage contamination has a devastating effect on microbial fermentation, resulting in fermentation failure and substantial economic loss.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:
Radiation-resistant bacteria are of great application potential in various fields, including bioindustry and bioremediation of radioactive waste. However, how radiation-resistant bacteria combat against invading phages is seldom addressed. Here, we present a series of crystal structures of a sensor and an effector of the cyclic oligonucleotide-based anti-phage signaling system (CBASS) from a radioresistant bacterium Deinococcus wulumuqiensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!