Optimization of surface roughness, phase transformation and shear bond strength in sandblasting process of YTZP using statistical machine learning.

J Mech Behav Biomed Mater

Mechanical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam; Wellness Research Thrust, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam. Electronic address:

Published: February 2024

Sandblasting process is often applied to roughen the intaglio of yttria tetragonal zirconia polycrystals (YTZP) surfaces for easy and quality adhesion and micro-shear retention with dentine/resin cements. Sandblasting process parameters have shown to influence, at different scales, surface roughness, phase transformation and shear bond strength, all of which are referred, herein, as performance characteristics. This study aimed to find the parametric settings of sandblasting parameters that could simultaneously optimize these performance characteristics, hypothetically testing the probability. YTZP surfaces were sandblasted at different levels of incidence angle (IA), abrasive particle size (AP), pressure(P) and sandblasting time (ST) following the Taguchi method based on the two-level parametric process settings (L(2)). Surface morphologies, roughness (SR), monoclinic content (MC), and shear bond strength (SS) were characterized by the SEM, average surface roughness, XRD, and shear bond strength tests, respectively. Rough surfaces containing scratches, plastic deformation streaks, micro cracks and pitting were observed. According to the Taguchi method, the same optimum sandblasting parametric setting maximized SR and MC but failed to maximize SS. Subsequently, the principal component analysis embedded in statistical machine learning was applied to find the optimum sandblasting parametric setting that maximized all the performance characteristics. The optimum sandblasting setting of IA = 45°, AP = 110 μm, ST = 20 s and P = 400 kPa predicted the maximum values of SR = 0.773 μm, MC = 36% and SS = 16.6 MPa. Analysis of variance confirmed AP and P as the most influencing parameters affecting all performance characteristics. Finally, these results provide a systematic and comprehensive route for optimizing sandblasting roughening of YTZP surfaces which can be adopted in adhesive dental and orthodontic industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.106245DOI Listing

Publication Analysis

Top Keywords

shear bond
16
bond strength
16
performance characteristics
16
surface roughness
12
sandblasting process
12
ytzp surfaces
12
optimum sandblasting
12
sandblasting
9
roughness phase
8
phase transformation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!