Background: Surgical extraction of the lower third molar (LTM) may trigger neurosensory injury of the inferior alveolar nerve, making extraction a real challenge. This study set out to assess whether is it possible to predict neurosensory alterations from preoperative imaging.
Material And Methods: A total of 99 patients underwent 124 impacted lower third molar (ILTM) surgeries. Prior to surgery, panoramic and CBCT images were evaluated in an attempt to predict a neurosensory disturbance. Preoperative data (ILTM position, panoramic radiograph signs, inferior alveolar nerve (IAN) location and its contact with the ILTM roots) and intra/postoperative findings (extraction difficulty and sensitivity alterations) were recorded. Descriptive and bivariate data analysis was performed. Statistical comparison applied the chi-square test, Fisher test, and one-way ANOVA test. Statistical significance was established with a confidence interval (CI) of 95%.
Results: In 4.03% of cases, patients experienced neurosensory alterations. Of 124 ILTM positions in panoramic radiographs, 76 cases were considered to exhibit a potential neurosensory risk as they presented two or more types of superimposed relationships between ILTM and mandibular canal. Of these, alterations were reported in only three cases (3.95%). Of the 48 remaining ILTM images presenting only one sign, neurosensory alterations were observed in two cases (4.17%). No permanent alterations were recorded in any of the five cases observed.
Conclusions: Within the limitations of the present study, prediction of neurosensory alterations prior to ILTM extraction by means of preoperative imaging did not show a significant statistical correlation with post-surgical incidence. Nevertheless, interruption of the canal´s white line (ICWL) or a diversion of the canal (DC) may predict an increased risk of IAN injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765331 | PMC |
http://dx.doi.org/10.4317/medoral.26056 | DOI Listing |
Pediatr Infect Dis J
December 2024
From the Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
Introduction: Central nervous system (CNS) infections represent some of the most critical pediatric health challenges, characterized by high mortality rates and a notable risk of long-term complications. Despite their significance, standardized guidelines for endocrinological follow-up of CNS infection survivors are lacking, leading to reliance on the expertise of individual centers and clinicians.
Materials And Methods: Prospective monocentric observational study conducted at the Fondazione Policlinico Universitario Agostino Gemelli in Rome, Italy.
Cureus
November 2024
Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University (AMU), Aligarh, IND.
Background: Diabetes mellitus (DM) is a global disease that is strongly associated with both microvascular and macrovascular complications. A significant proportion of individuals with diabetes develop diabetic retinopathy (DR), a microvascular complication that can lead to blindness, particularly in working-age adults. Diabetes adversely affects the entire neurosensory retina, with accelerated neuronal apoptosis and activation or altered metabolism of neuroretinal supporting cells.
View Article and Find Full Text PDFAdv Biol (Weinh)
December 2024
Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential.
View Article and Find Full Text PDFProc Biol Sci
November 2024
School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
Migratory birds are able to navigate over great distances with remarkable accuracy. The mechanism they use to achieve this feat is thought to involve two distinct steps: locating their position (the 'map') and heading towards the direction determined (the 'compass'). For decades, this map-and-compass concept has shaped our perception of navigation in animals, although the nature of the map remains debated.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
New York Proton Center, New York, NY 10035, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!