The biomechanical assessment of pelvic kinematics during a single leg squat (SLS) commonly relies on expensive equipment, which precludes its wider implementation in ecological settings. Smartphone sensors could represent an effective solution to objectively quantify pelvic kinematics remotely, but their measure properties need to be evaluated before advocating their use in practice. This study aimed to assess whether measures of pelvic kinematics collected remotely using smartphones during SLS are repeatable between days, and if changes in pelvic kinematics can be identified during an endurance task. Thirty-three healthy young adults were tested remotely on two different days using their own smartphones placed on the lumbosacral region. Pelvic orientation and acceleration were collected during three sets of seven SLS and an endurance task of twenty consecutive SLS. The intersession reliability was assessed using Intraclass Correlation Coefficient (ICC2,k), Standard Error of Measurement, and Minimal Detectable Change. T-tests were used to identify pelvic kinematics changes during the endurance task and to assess between-day bias. Measures of pelvic orientation and frequency features of the acceleration signals showed good to excellent reliability (multiple ICC2,k ≥ 0.79), and a shift of the power spectrum to lower frequencies on the second day (multiple p<0.05). The endurance task resulted in larger contralateral pelvic drop and rotation (multiple p<0.05) and increased spectral entropy (multiple p<0.05). Our findings demonstrate that reliable measures of pelvic kinematics can be obtained remotely using participants' smartphones during SLS. Smartphone sensors can also identify changes in motor control, such as contralateral pelvic drop during an endurance task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664960PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288760PLOS

Publication Analysis

Top Keywords

pelvic kinematics
24
endurance task
12
pelvic
8
assessment pelvic
8
kinematics single
8
single leg
8
leg squat
8
smartphone sensors
8
measures pelvic
8
pelvic orientation
8

Similar Publications

Validation and Analysis of Recreational Runners' Kinematics Obtained from a Sacral IMU.

Sensors (Basel)

January 2025

Sport and Physical Activity Research Centre, Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Rd, Sheffield S9 3TY, UK.

Our aim was to validate a sacral-mounted inertial measurement unit (IMU) for reconstructing running kinematics and comparing movement patterns within and between runners. IMU data were processed using Kalman and complementary filters separately. RMSE and Bland-Altman analysis assessed the validity of each filtering method against a motion capture system.

View Article and Find Full Text PDF

Vertical Movement of Head, Withers, and Pelvis of High-Level Dressage Horses Trotting in Hand vs. Being Ridden.

Animals (Basel)

January 2025

Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, NL-3584 CM Utrecht, The Netherlands.

Prior to international competitions, dressage horses are evaluated for fitness to compete while trotting in hand on a firm surface. This study compares the kinematics of experienced dressage horses trotting under fitness-to-compete conditions vs. performing collected and extended trot when ridden on a sand-fiber arena surface.

View Article and Find Full Text PDF

Exploring the optimal reconstruction strategy for Enneking III defects in pelvis bone tumors: a finite element analysis.

J Orthop Surg Res

January 2025

Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China.

Background: Controversy exists regarding the reconstruction of bone defects in Enneking III. This study aimed to use the finite element analysis (FEA) method to clarify (1) the utility of reconstructing the pelvis Enneking III region and (2) the optimal approach for this reconstruction.

Methods: FEA models were generated for three types of Enneking III defects in the pelvis, replacing all the defect areas in region III with a sizable solid box for topology optimization (TO).

View Article and Find Full Text PDF

Difference in movement coordination and variability during Five-Repetition Sit-to-Stand between people with and without Chronic Low back pain.

J Biomech

January 2025

Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, Hong Kong SAR, China; CUHK Jockey Club Institute of Aging, The Chinese University of Hong Kong, N.T., Hong Kong, China. Electronic address:

Chronic low back pain (CLBP) affects people's activities of daily living, including sitting down and standing up. Movement pattern analyses during five-repetition sit-to-stand (5RSTS) may allow CLBP status differentiation. 44 CLBP and 22 asymptomatic participants performed 5RSTS in this study, with their trunk and lower limb movements recorded using 3-dimensional motion capture system.

View Article and Find Full Text PDF

Uncovering the hidden mechanics of upper body rotations in tennis serves using wearable sensors on Dutch professional players.

Front Sports Act Living

January 2025

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

Background: It is assumed that the tennis serve is performed according to the kinetic chain principle in which a proximal-to-distal sequence in peak angular velocities of subsequent body segments can be observed to reach high end point ball velocities. The aim of the present study was to investigate if the magnitude and (intersegmental) timing of peak angular velocities of body segments in professional tennis players are different between first and second serves and if they are associated with serve performance.

Methods: Eight (two female and six male) professional tennis players performed each 48 tennis serves on a tennis court.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!