Wind power systems are a promising form of energy supply. At present, most of the studies focuses on the performance of individual components such as wind rotors or generators, and the overall output effect of wind power system is determined by the characteristics of wind rotor and generator and their combined characteristics. However, the evaluation of the overall output characteristics of the system is rarely considered. In order to investigate the overall output of the system quickly, a performance matching method of wind rotor and generator based on energy transfer is proposed in this paper. Based on the series operating characteristics of the wind power system model, the energy transformation process of the wind rotor, generator and the whole system are unified described by energy transfer. On the premise that the performance of wind rotor and generator is known, the transfer function model of each component is established, and on this basis, the transfer function model of the overall system is obtained. Then, the overall output effect of the system is analyzed and evaluated by this system transfer function model. The performance of the model is analyzed and compared by using a vertical axis wind power system coupling test bench and MATLAB/Simulink software. The results show that the error between the system output based on the theoretical model and the wind tunnel test is less than 6.5%, and the trend of the simulation and the test curve of the system output is consistent. Therefore, this method can be used to quickly predict the overall output performance of the wind turbine and generator on the premise that the performance of each component is known, without the need to connect each component to a wind power system for testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664935 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294504 | PLOS |
Sci Rep
January 2025
School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China.
Transitioning to a power system heavily reliant on renewable wind energy involves more than just replacing conventional fossil-fuel-based power plant with wind farms, the wind energy must be able to meet the requirement of voltage establishment and power balance. It is believed that the self synchronized voltage source control of DFIG wind turbine generator is one of the possible solutions to realize virtual inertia and is helpful to increase the frequency stability of power system, thus is meaningful in the transformation of the power system dominated by renewable energy. Plenty of research has been conducted on the self synchronized voltage source control strategy in steady state, but few research is focused on the soft grid integration, which is a complicated process involving wind turbine control and power converter control.
View Article and Find Full Text PDFFront Nutr
December 2024
Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore, India.
PLoS One
December 2024
Tianjin Mingyang Wind Power Equipment Co., Ltd. Tianjin, China.
Building a high-proportion renewable energy power system is a key measure to address the challenges of the energy revolution and climate change. However, current high-proportion renewable energy systems face issues of frequency instability and voltage fluctuations. To address these challenges, this paper proposes a novel topology for a stator free speed regulating wind turbine generation system.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Energy Centre, Maulana Azad National Institute of Technology, Bhopal, MP, India.
Sci Total Environ
December 2024
Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany.
Offshore wind farms (OWFs) pose new anthropogenic pressures on the marine environment as the erosion of turbine blades release organic and inorganic substances with potential consequences for marine life. In the present study, possible effects of the released particles and their chemical constituents on the metabolic profile of the blue mussel, Mytilus edulis, were investigated, utilizing H NMR spectroscopy. In the lab, mussels were exposed for 7 and 14 days to different concentrations (10 and 40 mg L) of microplastic (MP) particles which were derived from cryo-milled rotor blade coatings and core materials (glass fiber polymer, GFP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!