Transfusion of red blood cells (RBCs) has been associated with adverse outcomes. Mechanisms may be related to donor sex and biological age of RBC. This study hypothesized that receipt of female blood is associated with decreased post-transfusion recovery (PTR) and a concomitant increased organ entrapment in rats, related to young age of donor RBCs. Donor rats underwent bloodletting to stimulate production of new, young RBCs, followed by Percoll fractionation for further enrichment of young RBCs based on their low density. Control donors did not undergo these procedures. Male rats received either a (biotinylated) standard RBC product or a product enriched for young RBCs, derived from either male or female donors. Controls received saline. Organs and blood samples were harvested after 24 hours. This study found no difference in PTR between groups, although only the group receiving young RBCs from females failed to reach a PTR of 75%. Receipt of both standard RBCs and young RBCs from females was associated with increased entrapment of donor RBCs in the lung, liver, and spleen compared to receiving blood from male donors. Soluble ICAM-1 and markers of hemolysis were higher in recipients of female blood compared to control. In conclusion, transfusing RBCs from female donors, but not from male donors, is associated with trapping of donor RBCs in organs, accompanied by endothelial activation and hemolysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664878 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288308 | PLOS |
Pathogens
December 2024
School of Agriculture Science, Murdoch University, Murdoch, WA 6150, Australia.
Malaria and other haemosporidian parasites are common in reptiles. During baseline health surveys of sea turtles in Western Australia (WA), haemosporidian parasites were detected in flatback () and green () turtle erythrocytes during routine blood film examination. 130 blood samples were screened via polymerase chain reaction (PCR), including 105 20 and 5 olive ridley turtles ().
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Medical Surgical and Health Sciences, ASUGI, University of Trieste, 34127 Trieste, Italy.
Hypokinesia triggers oxidative stress and accelerates the turnover of the glutathione system via the γ-glutamyl cycle. Our study aimed to identify the regulatory checkpoints controlling intracellular glutathione levels. We measured the intermediate substrates of the γ-glutamyl cycle in erythrocytes from 19 healthy young male volunteers before and during a 10-day experimental bed rest.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States.
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.
View Article and Find Full Text PDFSports Med Health Sci
January 2025
Postgraduate Program in Health Sciences of the Western Amazon, Federal University of Acre, Rio Branco, AC, Brazil.
Prolonged hyperglycemia conditions are a risk factor for chronic degenerative diseases such as diabetes and obesity. Testosterone is known to cause muscle hypertrophy, reduced fat mass, and increased body strength. The study aimed to verify possible alterations and differences in the influence of testosterone on the physical performance in post-exercise conditions of young and old animals with alloxan-induced hyperglycemia.
View Article and Find Full Text PDFChembiochem
December 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!