To investigate the role of the secondary 5-hydroxy group in the activity of the anticancer drug tigilanol tiglate () (Stelfonta), oxidation of this epoxytigliane diterpenoid from the Australian rainforest plant was attempted. Eventually, 5-dehydrotigilanol tiglate () proved too unstable to be characterized in terms of biological activity and, therefore, was not a suitable tool compound for bioactivity studies. On the other hand, a series of remarkable skeletal rearrangements associated with the presence of a 5-keto group were discovered during its synthesis, including a dismutative ring expansion of ring A and a mechanistically unprecedented dyotropic substituent swap around the C-4/C-10 bond. Taken together, these observations highlight the propensity of the α-hydroxy-β-diketone system to trigger complex skeletal rearrangements and pave the way to new areas of the natural products chemical space.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749460 | PMC |
http://dx.doi.org/10.1021/acs.jnatprod.3c00834 | DOI Listing |
J Cell Sci
January 2025
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
An electrochemical strategy for the regioselective construction of seleno-benzothiophenes/furans is reported through electrochemical selenocyclization, followed by Wagner-Meerwein rearrangement. This electro-oxidative tandem process operates under metal-free and external chemical oxidant-free conditions. Advantageously, unprotected homopropargyl alcohols were found to be compatible under the reaction conditions, releasing water and dihydrogen as the biproduct.
View Article and Find Full Text PDFChemistry
January 2025
Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova, Chemistry Department, RUSSIAN FEDERATION.
We provide important novel insights into skeletal transformations of fullerene by reporting new cases of cage shrinkage in the most abundant C60 fullerene via a C2 loss. High-temperature (400-500 oC) chlorination of IPR C60 with SbCl5 or SbCl5/SbCl3 mixtures predominantly gives non-IPR C60Cln compounds via Stone-Wales rearrangements, but the present study further reveals non-classical C58Cln chlorofullerenes as by-products. The new C58(NC1)Cl20 and C58(NC1)Cl24 chlorides have been isolated by air-free HPLC and structurally characterized by X-ray crystallography.
View Article and Find Full Text PDFJ Org Chem
January 2025
Applied Chemistry and Chemical Engineering, Graduate School of Engineering, Kogakuin University, Nakano 2665-1, Hachioji, Tokyo 192-0015, Japan.
The cascade aza-Prins/Friedel-Crafts reaction of homocinnamyloxycarbamate with electron-rich aromatic aldehydes has been successfully established. Most of the aromatic aldehydes react with the carbamate stereoselectively to generate -hydroindeno-1,2-oxazinanes. However, the cascade reactions of benzaldehydes bearing two methoxy groups at the -positions exhibit a unique stereochemical profile.
View Article and Find Full Text PDFStructure
January 2025
Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK. Electronic address:
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!