A photoredox-catalyzed approach for the difluoroalkylation of amino acids was achieved through simultaneous decarboxylation and defluorination processes. This innovative protocol employs commonly available amino acids and trifluoroacetophenones as the primary starting materials, eliminating the necessity for preactivation. This strategy has enabled the synthesis of several difluoroketone functionalized amines in moderate to impressive yields. These synthesized compounds are presented as foundational molecules for subsequent modification. The underlying mechanism for the transformation is anchored in a single electron transfer (SET) radical pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c03675DOI Listing

Publication Analysis

Top Keywords

amino acids
12
simultaneous decarboxylation
8
decarboxylation defluorination
8
visible-light-promoted csp-csp
4
csp-csp cross-coupling
4
cross-coupling amino
4
acids aryl
4
aryl trifluoromethyl
4
trifluoromethyl ketones
4
ketones simultaneous
4

Similar Publications

Background: Additional to total protein content, the amino acid (AA) profile is important to the nutritional value of soybean seed. The AA profile in soybean seed is a complex quantitative trait controlled by multiple interconnected genes and pathways controlling the accumulation of each AA. With a total of 621 soybean germplasm, we used three genome-wide association study (GWAS)-based approaches to investigate the genomic regions controlling the AA content and profile in soybean.

View Article and Find Full Text PDF

C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.

View Article and Find Full Text PDF

Huntington's disease (HD), a neurodegenerative disease, affects approximately 30,000 people in the United States, with 200,000 more at risk. Mitochondrial dysfunction caused by mutant huntingtin (mHTT) drives early HD pathophysiology. mHTT binds the translocase of mitochondrial inner membrane (TIM23) complex, inhibiting mitochondrial protein import and altering the mitochondrial proteome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!