Developing inorganic-organic composite polymers necessitates a new strategy for effectively controlling shape and optical properties while accommodating guest materials, as conventional polymers primarily act as  carriers that transport inorganic substances. Here, a universal approach is introduced utilizing mesoporous liquid crystal polymer particles (MLPs) to fabricate inorganic-organic composites. By leveraging the liquid crystal phase, morphology and optical properties are precisely controlled through the molecular-level arrangement of the host, here monomers. The controlled host material allows the synthesis of inorganic particles within the matrix or accommodation of presynthesized nano-inorganic particles, all while preserving the intrinsic properties of the host material. This composite material surpasses the functional capabilities of the polymer alone by sequentially integrating one or more inorganic materials, allowing for the incorporation of multiple functionalities within a single polymer particle. Furthermore, this approach effectively mitigates the drawbacks associated with guest materials resulting in a substantial enhancement of composite performance. The presented approach is anticipated to hold immense potential for various applications in optoelectronics, catalysis, and biosensing, addressing the evolving demands of the society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202307388DOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
mesoporous liquid
8
crystal polymer
8
polymer particles
8
optical properties
8
guest materials
8
host material
8
universal strategy
4
strategy inorganic
4
inorganic nanoparticle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!