The development of products from natural plant sources, including agriculture and food wastes, contributes significantly to the circular economy and global sustainability. Cork and grape wastes were employed as the primary sources in this study to obtain compounds of interest under mild extraction conditions. Laccase was applied to oxidize the cork and grape extracts, with the aim of producing value-added molecules with improved properties. Ultraviolet-visible (UV-vis) spectroscopy was assessed to monitor the oxidation process, and characterization of the end products was performed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) spectroscopy. The antioxidant and antiaging properties were evaluated by means of ABTS, DPPH, FRAP, and SPF testing. Overall, as compared to their monomeric counterparts, the polymeric compounds displayed remarkable antioxidant and antiaging characteristics after laccase oxidation, showing tremendous potential for applications in the food, pharmaceutical, cosmetic, and textile industries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c04798DOI Listing

Publication Analysis

Top Keywords

cork grape
12
grape extracts
8
antioxidant antiaging
8
laccase-catalyzed synthesis
4
synthesis added-value
4
added-value polymers
4
polymers cork
4
extracts development
4
development products
4
products natural
4

Similar Publications

is an aerobic, Gram-negative bacterium that is responsible for many plant diseases. The bacterium is the causal agent of Pierce's disease in grapes and is also responsible for citrus variegated chlorosis, peach phony disease, olive quick decline syndrome and leaf scorches of various species. The production of biofilm is intrinsically linked with persistence and transmission in .

View Article and Find Full Text PDF

An experiment involving the ageing of Syrah red wine was conducted over a period of 24 months, during which the impact of four different micro-agglomerated corks was examined. An untargeted UHPLC-Q-Orbitrap metabolomics analysis was performed and provided valuable insights into the chemical dynamics of red wine evolution. Forty-three specific discriminating compounds were found for non-aged wines, including various CHO and CHON-types molecules.

View Article and Find Full Text PDF

Introduction: A clear immune correlate of protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been defined. We explored antibody, B-cell, and T-cell responses to the third-dose vaccine and relationship to incident SARS-CoV-2 infection.

Methods: Adults in a prospective cohort provided blood samples at day 0, day 14, and 10 months after the third-dose SARS-CoV-2 vaccine.

View Article and Find Full Text PDF

A Syrah red wine ageing experiment was set up during 24-months and the influence of four micro-agglomerated corks were investigated. Specific phenolic ageing markers were selected and hemi-synthesized: vitisin B, malvidin-ethyl-catechin, and epicatechin-sulfonate. A targeted quantification method of these markers was then developed and validated by using ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-QqQ-MS) operating in MRM (Multiple Reaction Monitoring).

View Article and Find Full Text PDF

Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota?

Nutr Neurosci

September 2024

Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA.

Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!