A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methods in regression analysis in surgical oncology research-best practice guidelines. | LitMetric

Background: Using real working examples, we provide strategies and address challenges in linear and logistic regression to demonstrate best practice guidelines and pitfalls of regression modeling in surgical oncology research.

Methods: To demonstrate our best practices, we reviewed patients who underwent tissue expander breast reconstruction between 2019 and 2021. We assessed predictive factors that affect BREAST-Q Physical Well-Being of the Chest (PWB-C) scores at 2 weeks with linear regression modeling and overall complications and malrotation with logistic regression modeling. Model fit and performance were assessed.

Results: The 1986 patients were included in the analysis. In linear regression, age [β = 0.18 (95% CI: 0.09, 0.28); p < 0.001], single marital status [β = 2.6 (0.31, 5.0); p = 0.026], and prepectoral pocket dissection [β = 4.6 (2.7, 6.5); p < 0.001] were significantly associated with PWB-C at 2 weeks. For logistic regression, BMI [OR = 1.06 (95% CI: 1.04, 1.08); p < 0.001], age [OR = 1.02 (1.01, 1.03); p = 0.002], bilateral reconstruction [OR = 1.39 (1.09, 1.79); p = 0.009], and prepectoral dissection [OR = 1.53 (1.21, 1.94); p < 0.001] were associated with increased likelihood of a complication.

Conclusion: We provide focused directives for successful application of regression techniques in surgical oncology research. We encourage researchers to select variables with clinical judgment, confirm appropriate model fitting, and consider clinical plausibility for interpretation when utilizing regression models in their research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334614PMC
http://dx.doi.org/10.1002/jso.27533DOI Listing

Publication Analysis

Top Keywords

regression modeling
12
surgical oncology
8
practice guidelines
8
logistic regression
8
demonstrate best
8
linear regression
8
regression
5
methods regression
4
regression analysis
4
analysis surgical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!