Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The problem of modeling the mass peak shape of a quadrupole mass filter (QMF) with round rods is considered. A number of factors leading to the degradation of the mass peak shape are studied, namely, displacement of the electrodes with respect to their original position, changes in the diameter of the electrodes, and asymmetry of the supply potentials. Decomposition of the rod set field on multipole fields allows to obtain an analytical representation of the ion motion equations. Simulations have shown that a parallel shift of one or two electrodes leads to a shift of the peak along the mass number axis and dips at the peak apex. Unbalance of supply voltages does not significantly distort the peak shape, but it shifts the peak along the mass axis and creates a jump of the quadrupole offset potential proportional to the relative unbalance of X and Y rods potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.4986 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!