Childhood maltreatment and mental health problems are common among young people placed out-of-home. However, evidence on the impact of maltreatment on the course of mental health problems in at-risk populations is sparse. The aim of this longitudinal study is twofold: (a) describe the course of mental health problems and the shift in symptom patterns among adolescents in youth residential care into young adulthood and (b) assess how childhood maltreatment is related to the course of mental health problems. One hundred and sixty-six adolescents in Swiss youth residential care were followed up into young adulthood (36.1% women; = 16.1 years; = 26.4 years). Latent transition analysis was employed to analyze transitions of symptom patterns and their association with maltreatment exposure. We found three latent classes of mental health problems: a "multiproblem"-class (51.8% baseline; 33.7% follow-up), a "low symptom"-class (39.2% baseline; 60.2% follow-up), and an "externalizing"-class (9.0% baseline; 6.0% follow-up). Individuals in the "multiproblem"-class were likely to transition towards less-complex symptom patterns. Higher severity of self-reported childhood maltreatment was associated with more complex and persistent mental health problems. Our study underlines the need for collaboration between residential and psychiatric care systems within and after care placements, with a specialized focus on trauma-informed interventions and care.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0954579423001426DOI Listing

Publication Analysis

Top Keywords

mental health
28
health problems
28
childhood maltreatment
16
youth residential
12
residential care
12
course mental
12
symptom patterns
12
maltreatment mental
8
adolescents youth
8
latent transition
8

Similar Publications

The current study aims to determine how the interactions between practice (distributed/focused) and mental capacity (high/low) in the cloud-computing environment (CCE) affect the development of reproductive health skills and cognitive absorption. The study employed an experimental design, and it included a categorical variable for mental capacity (low/high) and an independent variable with two types of activities (distributed/focused). The research sample consisted of 240 students from the College of Science and College of Applied Medical Sciences at the University of Hail's.

View Article and Find Full Text PDF

The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy.

View Article and Find Full Text PDF

The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants.

View Article and Find Full Text PDF

Personalized Clustering for Emotion Recognition Improvement.

Sensors (Basel)

December 2024

Instituto de Estudios de Género, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe, Spain.

Emotion recognition through artificial intelligence and smart sensing of physical and physiological signals (affective computing) is achieving very interesting results in terms of accuracy, inference times, and user-independent models. In this sense, there are applications related to the safety and well-being of people (sexual assaults, gender-based violence, children and elderly abuse, mental health, etc.) that require even more improvements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!